Answer:
I would say that I agree with the one that said that each hill must be lower than the previous one and use the principle of conservation of energy to explain.
Explanation:
Roller coaster are usually designed such that its total energy remains conserved at any point on the track. Now, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. At certain height on the track, the total energy of the roller coaster is in form of potential energy, which gets converted to kinetic energy as soon as it starts sliding down the hill till get to the hill's endpoint where it has maximum kinetic energy. The cycle of sliding from a high point on the track to a low point on the track means there is potential energy is converted to kinetic energy and kinetic energy then converts back to potential energy and the cycle continues.
However, due to the effect of gravity and frictional force between the track and the coaster, the energy of the coaster is gradually reduces, so it becomes a bit difficult for the coaster to move to the next hill of the same height. It is for this reason that each hill must be lower than the previous one, so that the coaster can overcome the next hill's height with its reduced energy until it loses all its energy and comes to a stop.
Answer:
Speed of wind = 50mi/hr, Speed of plane in still air = 400mi/hr
Explanation:
Let the speed of the wind = Vw,
Speed of the plane in still air = Vsa,
The first trip the average speed of the plane = 1575mi/4.5hours = 350mi/hr
The coming trip the wind behind = 1575mi/3.5hrs = 450
Write the motion in equation form
First trip ( the plane flew into the wind)
Vaverage = Vsa - Vw
350 = Vsa - Vw
Second trip the wind was behind
450 = Vsa +Vw
Adding the two equation
800 = 2Vas
Vas = 800/2 = 400mi/hr
Substitute for Vas into equation 1
350mi/hr = 400mi/hr - Vw
Vw = 400-350 = 50mi/hr
Answer
given,
time interval = 11.3 s
a) initial velocity, vi = 15 m/s
final velocity, v_f = -5.30 m/s


a = -1.79 m/s²
the direction is along left side
b) initial velocity, vi = -5.30 m/s
final velocity, v_f = -15 m/s


a = -0.858 m/s²
the direction is along left side
c) initial velocity, vi = 15 m/s
final velocity, v_f = -15 m/s


a = -2.65 m/s²
the direction is along left side
The answer is solar flare. Solar flares are commonly accompanied by coronal mass ejection. Solar flares are periods when the sun is suddenly brighter at a spot at its surface. This is due to the ejection of electrons, ions, and atoms (plasma clouds) accompanied by electromagnetic waves.
<span>The answers are --
a) wind direction
b) wind speed
e) intensity of precipitation
f) location of precipitation</span>