Answer:
The statement BI = BK is true from the given information ⇒ B
Step-by-step explanation:
If a line is a perpendicular bisector of a line segment, then
- The line intersects the line segment in 4 right angles
- The line intersects the line segment in the mid-point of the line segment
- Any point on the line is equidistant from the endpoints of the line segment
Let us find the true statement
∵ Line AB is the perpendicular bisector of segment IK
→ By using the 1st note above
∴ AB ⊥ IK
∴ ∠IJA, ∠KJA, ∠IJB, ∠KJB are right angles
→ By using the 2nd note above
∴ J is the mid-point of IK
∴ IJ = JK
∵ Any point on line AB is equidistant from The endpoints of IK ⇒ 3rd note
∴ AI = AK
∴ BI = BK
∴ The statement BI = BK is true from the given information
Is there a picture for the problem?
to find the equivalence, you would usually multiply the numerator and the denominator by the same number
Examples: 1/2 1×2, 2×2 It becomes 2/4 which is equivalent to 1/2
We have the following statements:
surface of the dead sea is 424.3 meters
the height of mt. everest was 8,844.43 meters
Therefore, the difference between both will be
8844.43 - 424.3 = 8420.13 meters
Answer
mt. everest was 8420.13 meters higher
Step-by-step explanation:
Let y1 and y2 be (e^x)/2, and (xe^x)/2 respectively.
The Wronskian of them functions be
W = (y1y2' - y1'y2)
y1 = (e^x)/2 = y1'
y2 = (xe^x)/2
y2' = (1/2)(x + 1)e^x
W = (1/4)(x + 1)e^(2x) - (1/4)xe^(2x)
= (1/4)(x + 1 - x)e^(2x)
W = (1/4)e^(2x)
Since the Wronskian ≠ 0, we conclude that functions are linearly independent, and hence, form a set of fundamental solutions.