1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mariarad [96]
3 years ago
7

If the intensity of a loud car horn is 0.005 W/m^2 when you are 2 meters away from the source. Calculate the sound intensity lev

el. A. 1.6 W
B. 0.06 W
C. 97 dB
D. 223 dB
E. 179 dB
Physics
1 answer:
nekit [7.7K]3 years ago
4 0

Answer:

(c) 97 dB sound intensity level

Explanation:

We have given the intensity of the loud car horn I=0.005w/m^2

We know that I_O=10^{-12}w/m^2

Now the sound intensity level is given by \beta =10log\frac{I}{I_0}=10log\frac{0.005}{10^{-12}}=96.98dB , which is nearly equal to 97

So the sound intensity level will be 97 dB

So option (c) will be the correct option

You might be interested in
A tennis ball is hit into the air with a racket. When is the balls kinetic energy the greatest?
madam [21]

Answer:

Kinetic energy is maximum when the player hits the ball.

Explanation:

Kinetic energy =\frac{1}{2} mv^2, where m is the mass and v is the velocity.

So kinetic energy is proportional to square of velocity.

Velocity is maximum when the player hits the ball.

So kinetic energy is maximum when the player hits the ball.

3 0
3 years ago
Sam, whose mass is 78 kg , stands at the top of a 11-m-high, 110-m-long snow-covered slope. His skis have a coefficient of kinet
Valentin [98]

Answer:

v = 8.09   m/s

Explanation:

For this exercise we use that the work done by the friction force plus the potential energy equals the change in the body's energy.

Let's calculate the energy

       

starting point. Higher

         Em₀ = U = m gh

final point. To go down the slope

         Em_f = K = ½ m v²

The work of the friction force is

         W = fr L cos 180

to find the friction force let's use Newton's second law

Axis y

        N - W_y = 0

        N = W_y

X axis

        Wₓ - fr = ma

let's use trigonometry

        sin  θ = y / L

         sin θ = 11/110 = 0.1

         θ = sin⁻¹  0.1

          θ = 5.74º

         sin 5.74 = Wₓ / W

         cos 5.74 = W_y / W

         Wₓ = W sin 5.74

         W_y = W cos 5.74

the formula for the friction force is

         fr = μ N

         fr = μ W cos θ

Work is friction force is

         W_fr = - μ W L cos θ  

Let's use the relationship of work with energy

        W + ΔU = ΔK

         -μ mg L cos 5.74 + (mgh - 0) = 0  - ½ m v²

        v² = - 2 μ g L cos 5.74 +2 (gh)

        v² = 2gh - 2 μ gL cos 5.74

let's calculate

        v² = 2 9.8 11 - 2 0.07 9.8 110 cos 5.74

        v² = 215.6 -150.16

        v = √65.44

        v = 8.09   m/s

6 0
3 years ago
Two go-carts, A and B, race each other around a 1.0 track. Go-cart A travels at a constant speed of 20.0 /. Go-cart B accelerate
maria [59]

Complete Question

Q. Two go-carts, A and B, race each other around a 1.0km track. Go-cart A travels at a constant speed of 20m/s. Go-cart B accelerates uniformly from rest at a rate of 0.333m/s^2. Which go-cart wins the race and by how much time?

Answer:

Go-cart A is faster

Explanation:

From the question we are told that

       The length of the track is l =  1.0 \ km  =  1000 \  m

       The speed of  A is  v__{A}} =  20 \ m/s

       The uniform acceleration of  B is  a__{B}} =  0.333 \ m/s^2

  Generally the time taken by go-cart  A is mathematically represented as

              t__{A}} = \frac{l}{v__{A}}}

=>          t__{A}} = \frac{1000}{20}

=>           t__{A}} =  50 \  s

  Generally from kinematic equation we can evaluate the time taken by go-cart B as

             l =  ut__{B}} + \frac{1}{2}  a__{B}} * t__{B}}^2

given that go-cart B starts from rest  u =  0 m/s

So

            1000 =  0 *t__{B}} + \frac{1}{2}  * 0.333  * t__{B}}^2

=>         1000 =  0 *t__{B}} + \frac{1}{2}  0.333  * t__{B}}^2            

=>         t__{B}} =  77.5 \  seconds  

 

Comparing  t__{A}} \  and  \ t__{B}}  we see that t__{A}} is smaller so go-cart A is  faster

   

       

3 0
3 years ago
According to diagonal rule, the orbital with lowest energy in the given following is ________.
Kaylis [27]
The orbital with the lowest energy is 3s.
5 0
3 years ago
Hardness and density are physical properties.<br> a. True<br> b. False
antiseptic1488 [7]
a . true hardness and density are physical properties
7 0
3 years ago
Read 2 more answers
Other questions:
  • How do energy transformations occur in a hydroelectric plant?
    9·2 answers
  • Does the sun fuse hydrogen into helium or vice versa?
    6·1 answer
  • True or false the law of coservation of charge states that charge is neither created nor destroyed but transferred from one obje
    11·1 answer
  • Can an electron be found in an exact spot within an atom
    11·1 answer
  • What kind of materials does light pass through?
    14·1 answer
  • A basketball star covers 2.70 m horizontally in a jump to dunk the ball (see figure). His motion through space can be modeled pr
    7·1 answer
  • a spring with an unknown force constant is compressed as shown. If the original length of the spring is 60cm, determine (a)the s
    13·1 answer
  • List the compositional layers in order of most dense to least dense
    12·1 answer
  • Which of the following are vector quantities? Select all that apply.
    6·1 answer
  • Find the acceleration due to gravity on the surface of Mars. The
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!