Answer: Heat will transfer from the water to the air. When a mass of air moves on a warmer surface it is heated by its base. Then thermal instability develops in the lower layers and then extends upwards. If the air initially contained inversions, these are destroyed and a strong gradient is established uniformly in the lower troposphere temperature.
Answer:
Intensity of the light (first polarizer) (I₁) = 425 W/m²
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Explanation:
Given:
Unpolarized light of intensity (I₀) = 950 W/m²
θ = 65°
Find:
a. Intensity of the light (first polarizer)
b. Intensity of the light (second polarizer)
Computation:
a. Intensity of the light (first polarizer)
Intensity of the light (first polarizer) (I₁) = I₀ / 2
Intensity of the light (first polarizer) (I₁) = 950 / 2
Intensity of the light (first polarizer) (I₁) = 425 W/m²
b. Intensity of the light (second polarizer)
Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ
Intensity of the light (second polarizer) (I₂) = (425)(0.1786)
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
The best and most correct answer among the choices provided by your question is the second choice or letter C. A solar-powered car converts light energy to mechanical energy.
Solar cars use photovoltaic cells to convert sunlight into energy. Photovoltaic cells are the components in solar panels that convert the sun's energy to electricity<span>. They're made up of semiconductors, usually silicon, that absorb the light.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
Answer:
114.92749 keV
Explanation:
r = Radius of trajectory
m = Mass of electron = 
B = Magnetic field = 0.044 T
q = Charge of electron = 
The centripetal force and the magnetic forces are conserved

Velocity of first electron

Velocity of second electron

Total kinetic energy is given by

Converting to eV


The energy of incident electron is 114.92749 keV
Answer: 1.28 sec
Explanation:
Assuming that the glow following the collision was produced instantaneously, as the light propagates in a straight line from Moon to the Earth at a constant speed, we can get the time traveled by the light applying velocity definition as follows:
V = ∆x / ∆t
Solving for ∆t, we have:
∆t = ∆x/v = ∆x/c = 3.84 108 m / 3.8 108 m/s = 1.28 sec