The rms speed can be calculated using the following rule:
rms = sqrt ((3RT) / (M)) where:
R is the gas constant = 8.314 J/mol-K
T is the temperature = 31.5 + 273 = 304.5 degrees kelvin
M is the molar mass = 2*14 = 28 grams = 0.028 kg
Substitute with the givens to get the rms speed as follows:
rms speed = sqrt [(3*8.314*304.5) / (0.028)] = 520.811 m/sec
Opportunity cost refers to what you have to give up to buy what you want in terms of other goods or services. When economists use the word “cost,” we usually mean opportunity cost.
Answer:
-1.5m/s²
Explanation:
Acceleration can be thought of as [Change in Velocity]/[Change in time]. To find these changes, you simply subtract the initial quantity from the final quantity.
So for this question you have:
- V_i = 110m/s
- V_f = 80m/s
- t_i = 0s
- t_f = 20s
which means that the acceleration = (80-110)/(20-0)[m/s²] = (-30/20)m/s² = -1.5m/s²
Answer:
m≈501.57 g
Explanation:
The density formula is:
d=m/v
Let’s rearrange the formula for m. m is being divided by v. The inverse of division is multiplication, so multiply both aides by v.
d*v= m/v*v
d*v=m
The mass can be found by multiply the density and the volume.
m=d*v
The density is 1.06 grams per milliliter and the volume is 473.176 milliliters.
d= 1.06 g/mL
v= 473.176 mL
Substitute the values into the formula.
m= 1.06 g/mL * 473.176 mL
Multiply. When multiplying, the mL will cancel out.
m= 501.56656 g
Let’s round to the nearest hundredth. The 6 in the thousandth place tells us to round the 6 to a 7 in the hundredth place.
m ≈501.57 g
The mass is about 501.57 grams.