Answer:
Potential energy of spring = 24 Joules.
Explanation:
Given the following data;
Spring constant = 85N/m
Extension, e = 0.75m
Mass = 25kg
To find the potential energy of a spring
Potential energy of a spring is given by the formula;
P.E = ½ke²
Substituting into the equation, we have
P.E = ½*85*0.75²
P.E = 42.5 * 0.5625
P.E = 23.91 ≈ 24 Joules
P.E = 24 Joules
Air and water ima air bender
Answer:
I know someone anwsered but it would be 400M
Explanation:
i initial velocity (u)=10m/s
acceleration (a)=0
time taken (t) =40s
then distance (s)=u t +1/2 a t^2
s= u t +0 (as a is 0)
s= 10 x 40
s= 400M
The answer is <em>B. 5/4</em> or <em>1.25</em>
Answer:
E3 = 3.03 10⁻¹⁶ kJ, E4 = 4.09 10⁻¹⁶ kJ and E5 = 4.58 10⁻¹⁶ kJ
Explanation:
They give us some spectral lines of the Balmer series, let's take the opportunity to place the values in SI units
n = 3 λ = 656.3 nm = 656.3 10⁻⁹ m
n = 4 λ = 486.1 nm = 486.1 10⁻⁹ m
n = 5 λ=434.0 nm = 434.0 10⁻⁹ m
Let's use the Planck equation
E = h f
The speed of light equation
c = λ f
replace
E = h c /λ
Where h is the Planck constant that is worth 6.63 10⁻³⁴ J s and c is the speed of light that is worth 3 10⁸ m / s
Let's calculate the energies
E = 6.63 10⁻³⁴ 3 10⁸ / λ
E = 19.89 10⁻²⁶ /λ
n = 3
E3 = 19.89 10⁻²⁶ / 656.3 10⁻⁹
E3 = 3.03 10⁻¹⁹ J
1 kJ = 10³ J
E3 = 3.03 10⁻¹⁶ kJ
n = 4
E4 = 19.89 10⁻²⁶ /486.1 10⁻⁹
E4 = 4.09 10⁻¹⁹ J
E4 = 4.09 10⁻¹⁶ kJ
n = 5
E5 = 19.89 10⁻²⁶ /434.0 10⁻⁹
E5 = 4.58 10⁻¹⁹ J
E5 = 4.58 10⁻¹⁶ kJ