Answer:
q2 = -4.35*10^-9C
Explanation:
In order to find the values of the second charge, you use the following formula:
(1)
V: electric potential = 1.14 kV = 1.14*10^3 kV
k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
q1: charge 1 = 8.60*10^-9 C
q2: charge 2 = ?
r1: distance to the first charge = 20.7mm = 20.7*10^-3 m
r2: distance to the second charge = 15.1mm
You solve the equation (1) for q2, and replace the values of the other parameters:
![q_2=\frac{r_2}{k}[V-k\frac{q_1}{r_1}]=\frac{Vr_2}{k}-\frac{q_1r_2}{r_1}\\\\q_2=\frac{(1.14*10^3V)(15.1*10^{-3}m)}{8.98*10^9Nm^2/C^2}-\frac{(8.60*10^{-9}C)(15.1*10^{-3}m)}{20.7*10^{-3}m}\\\\q_2=-4.35*10^{-9}C](https://tex.z-dn.net/?f=q_2%3D%5Cfrac%7Br_2%7D%7Bk%7D%5BV-k%5Cfrac%7Bq_1%7D%7Br_1%7D%5D%3D%5Cfrac%7BVr_2%7D%7Bk%7D-%5Cfrac%7Bq_1r_2%7D%7Br_1%7D%5C%5C%5C%5Cq_2%3D%5Cfrac%7B%281.14%2A10%5E3V%29%2815.1%2A10%5E%7B-3%7Dm%29%7D%7B8.98%2A10%5E9Nm%5E2%2FC%5E2%7D-%5Cfrac%7B%288.60%2A10%5E%7B-9%7DC%29%2815.1%2A10%5E%7B-3%7Dm%29%7D%7B20.7%2A10%5E%7B-3%7Dm%7D%5C%5C%5C%5Cq_2%3D-4.35%2A10%5E%7B-9%7DC)
The values of the second charge is -4.35*10^-9C
Here's the part you need to know:
(Weight of anything) =
(the thing's mass)
times
(acceleration of gravity in the place where the thing is) .
Weight = (mass ) x (gravity) .
That's always true everywhere.
You should memorize it.
For the astronaut on Saturn . . .
Weight = (mass ) x (gravity) .
Weight = (68 kg) x (10.44 m/s²)
= 709.92 newtons .
__________________________________
On Earth, gravity is only 9.8 m/s².
So as long as the astronaut is on Earth, his weight is only
(68 kg) x (9.8 m/s²)
= 666.4 newtons .
Notice that his mass is his mass ... it doesn't change
no matter where he goes.
But his weight changes in different places, because
it depends on the gravity in each place.
There is no soil in a hole
;)
Answer:
Magnets exert forces and torques on each other due to the rules of electromagnetism. The forces of attraction field of magnets are due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the material. Hope this helps you! :)
Answer:
C. 590 mph

Explanation:
Given:
- velocity of jet,

- direction of velocity of jet, east relative to the ground
- velocity of Cessna,

- direction of velocity of Cessna, 60° north of west
Taking the x-axis alignment towards east and hence we have the velocity vector of the jet as reference.
Refer the attached schematic.
So,

&


Now the vector of relative velocity of Cessna with respect to jet:



Now the magnitude of this velocity:

is the relative velocity of Cessna with respect to the jet.