1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkinab [10]
2 years ago
12

A 34-m length of wire is stretched horizontally between two vertical posts. The wire carries a current of 68 A and experiences a

magnetic force of 0.16 N. Find the magnitude of the earth's magnetic field at the location of the wire, assuming the field makes an angle of 72.0° with respect to the wire.
Physics
1 answer:
il63 [147K]2 years ago
7 0

Answer:

7.28×10⁻⁵ T

Explanation:

Applying,

F = BILsin∅............. Equation 1

Where F = magnetic force, B = earth's magnetic field, I = current flowing through the wire, L = Length of the wire, ∅ = angle between the field and the wire.

make B the subject of the equation

B = F/ILsin∅.................. Equation 2

From the question,

Given: F = 0.16 N, I = 68 A, L = 34 m, ∅ = 72°

Substitute these values into equation 2

B = 0.16/(68×34×sin72°)

B = 0.16/(68×34×0.95)

B = 0.16/2196.4

B = 7.28×10⁻⁵ T

You might be interested in
Consider a system to be two train cars traveling toward each other. What is the total momentum of the system before the train ca
Brut [27]

Let say the two train cars are of masses m_1 and m_2

now if the speed of two cars are v_1 and v_2

then we can say that the momentum of two cars before they collide is given by

P = m_1v_1 - m_2v_2

here two cars are moving in opposite direction so we can say that the net momentum is subtraction of two cars momentum.

Now since in these two car motion there is no external force on them while they collide

So the momentum of two cars are always conserved.

hence we can say that the final momentum of two cars will be same after collision as it is before collision

P = m_1v_1 - m_2v_2

5 0
3 years ago
Read 2 more answers
How deep is the outer core beneath the surface
sukhopar [10]
Precisely around 1,800 miles below.
6 0
3 years ago
Some parents build their children’s lives around sports and place a high premium on the successes their children achieve in spor
riadik2000 [5.3K]

Answer:

I think they cross the line when they force sports into their child's life, and take away their choice of what they want to do so they essentially waste their childhood preparing for something that may never happen or they just don't get the opportunity to explore their artistic abilities.

Explanation:

3 0
3 years ago
A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio
Arisa [49]

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

6 0
3 years ago
Potassium ions (K+) move across a 7.0 -mm- thick cell membrane from the inside to the outside. The potential inside the cell is
Reil [10]

Explanation:

Relation between potential energy and charge is as follows.

           U = qV

or,    \Delta U = q \times \Delta V

                   = 1.6 \times 10^{-19} \times 70 \times 10^{-3}

                   = 112 \times 10^{-22} J

or,                = 1.12 \times 10^{20} J

Therefore, we can conclude that change in the electrical potential energy \Delta U is 1.12 \times 10^{20} J.

7 0
3 years ago
Other questions:
  • A coil has an inductance of 8.00 mh, and the current in it changes from 0.200 a to 1.50 a in a time interval of 0.350 s. find th
    14·1 answer
  • 15. For waves moving at a constant speed, if the wavelength is doubled, the frequency is
    5·1 answer
  • Male Rana catesbeiana bullfrogs are known for their loud mating call. The call is emitted not by the frog's mouth but by its ear
    14·1 answer
  • After an oil spill in the ocean, what happens to bacteria that break down the oil?
    9·1 answer
  • A rocket traveling at 80 m/s is accelerated uniformly to 152 m/s over a 18 s interval. What is its displacement during this time
    14·1 answer
  • How is budgeting different for most states than for the federal government?
    6·1 answer
  • A ball having mass 2 kg is connected by a string of length 2 m to a pivot point and held in place in a vertical position. A cons
    12·1 answer
  • What formula can I use to solve speed and temperature in soundwave​
    8·1 answer
  • What is a law in physics?​
    6·1 answer
  • A well labelled diagram of outdoor thermometer​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!