Answer:
125.83672 seconds
Explanation:
P = Power of the horse = 1 hp = 746 W (as it is not given we have assumed the horse has the power of 1 hp)
m = Mass of professor = 103 kg
g = Acceleration due to gravity = 9.8 m/s²
h = Height of professor = 93 m
Work done would be equal to the potential energy

Power is given by

The time taken by the horse to pull the professor is 125.83672 seconds
It is required an infinite work. The additional electron will never reach the origin.
In fact, assuming the additional electron is coming from the positive direction, as it approaches x=+1.00 m it will become closer and closer to the electron located at x=+1.00 m. However, the electrostatic force between the two electrons (which is repulsive) will become infinite when the second electron reaches x=+1.00 m, because the distance d between the two electrons is zero:

So, in order for the additional electron to cross this point, it is required an infinite amount of work, which is impossible.
Answer:
11,890
Explanation:
First we need to know what is considered a significant figure.
A significant figure is a value that is not a zero at the start OR end of a value.
Which means, the 0 in the value of 90 or 0.363 are not considered a significant figure.
The 0 in the value of 3056 is considered a significant figure.
So from the table, we can deduce:
0.275 has 3 significant figures
750 has 2 significant figures

has 3 significant figures.
11,890 has 4 significant figures.
320,050 has 5 significant figures.
So from the above, we can already see the answer.
Answer:
m = 105.37 kg
Explanation:
We are given;
Mass of man; m = 113 kg
Length of boat = 6.3m
Now, The position of the center of mass will not change during the motion of the man.
Thus,
X_g,i = X_g,f
So,
[113(6.3) + ma]/(113 + m) = [113(3.26) + m(a +3.26)]/(113 + m)
113 + m will cancel on both sides to give;
113(6.3) + ma = [113(3.26) + m(a +3.26)]
711.9 + ma = 368.38 + ma + 3.26m
ma will cancel out to give;
711.9 - 368.38 = 3.26m
343.52/3.26 = m
m = 105.37 kg