Answer:
60000 J
Explanation:
Assuming the force is applied parallel to the displacement of the elephant, the work done to move it across the floor is

where
F = 2000 N is the force applied
d = 30 m is the displacement of the elephant
Substituting the numbers into the formula, we find

Answer:
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Explanation:
Given data
legs of length r = 0.68 m
diameter = 3100 km
mass = 4.8×10^22 kg
to find out
maximum velocity for walk on the surface of europa
solution
first we calculate radius that is
radius = d/2 = 3100 /2 = 1550 km
radius = 1550 × 10³ m
so we calculate no maximum velocity that is
max velocity = √(gr) ...............1
here r is length of leg
we know g = GM/r² from universal gravitational law
so G we know 6.67 ×
N-m²/kg²
g = 6.67 ×
( 4.8×10^22 ) / ( 1550 × 10³ )
g = 1.33 m/s²
now
we put all value in equation 1
max velocity = √(1.33 × 0.68)
max velocity = 0.950999 m/s
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Answe
given,
mass of the bar, m = 30 Kg
distance of rise, h = 0.60 m
Assuming the efficiency = 25 %
energy from the pizza slice = 300 C = 1260 kJ
To consume Energy from the pizza bar is to be pulled several number of time.
( energy from pizza ) x (efficiency) = n m g h
n is the number of lift
( 1260 x 10³) x (0.25) = n x 30 x 9.8 x 0.6

n = 1786 times.
Weightlifter should lift bar 1786 times to burn off the energy.
Answer:
Two marbles are launched at t = 0 in the experiment illustrated in the figure below. Marble 1 is launched horizontally with a speed of 4.20 m/s from a height h = 0.950 m. Marble 2 is launched from ground level with a speed of 5.94 m/s at an angle above the horizontal. (a) Where would the marbles collide in the absence of gravity? Give the x and y coordinates of the collision point. (b) Where do the marbles collide given that gravity produces a downward acceleration of g = 9.81 m/s2? Give the x and y coordinates.
Explanation:
i want the answer i don't know