
- Speed of the mobile = 250 m/s
- It starts decelerating at a rate of 3 m/s²
- Time travelled = 45s

- Velocity of mobile after 45 seconds

We can solve the above question using the three equations of motion which are:-
- v = u + at
- s = ut + 1/2 at²
- v² = u² + 2as
So, Here a is acceleration of the body, u is the initial velocity, v is the final velocity, t is the time taken and s is the displacement of the body.

We are provided with,
- u = 250 m/s
- a = -3 m/s²
- t = 45 s
By using 1st equation of motion,
⇛ v = u + at
⇛ v = 250 + (-3)45
⇛ v = 250 - 135 m/s
⇛ v = 115 m/s
✤ <u>Final</u><u> </u><u>velocity</u><u> </u><u>of</u><u> </u><u>mobile</u><u> </u><u>=</u><u> </u><u>1</u><u>1</u><u>5</u><u> </u><u>m</u><u>/</u><u>s</u>
<u>━━━━━━━━━━━━━━━━━━━━</u>
Answer:
The fraction of its volume inside liquid is increased .
Explanation:
According to principle pf floatation , an object floats on the surface of water
when the weight of liquid displaced by it becomes equal to weight of the object . weight of the liquid depends upon the density of the liquid .
In the second case , when the body is dipped into liquid of lesser density , in order to balance the weight of body , more volume of liquid will be displaced so that weight of displaced liquid becomes equal to object's weight . So the body floats with greater depth inside liquid . The fraction of its volume inside liquid is increased .
did you tried first if you did I can help
5 What is the angular displacement at the end of the 25-mm-diameter shaft and the linear displacement of point A of Figure P5.5
<h3>What is
displacement ?</h3>
A displacement is a vector in geometry and mechanics that has a length equal to the shortest distance between a point P's initial and final positions. It calculates the length and angle of the net motion, or total motion, in a straight line from the starting point to the destination of the point trajectory. The translation that links the starting point and the ending point can be used to spot a displacement.
The final location xf of a point relative to its beginning position xi, or a relative position (derived from the motion), is another way to express a displacement. The difference between the end and beginning positions can be used to define the equivalent displacement vector
To learn more about displacement from the given link:
brainly.com/question/321442
#SPJ4
Sure, if the mortality (death) rate is even higher than the birth rate.