Answer:
= ( ρ_fluid g A) y
Explanation:
This exercise can be solved in two parts, the first finding the equilibrium force and the second finding the oscillating force
for the first part, let's write Newton's equilibrium equation
B₀ - W = 0
B₀ = W
ρ_fluid g V_fluid = W
the volume of the fluid is the area of the cube times the height it is submerged
V_fluid = A y
For the second part, the body introduces a quantity and below this equilibrium point, the equation is
B - W = m a
ρ_fluid g A (y₀ + y) - W = m a
ρ_fluid g A y + (ρ_fluid g A y₀ -W) = m a
ρ_fluid g A y + (B₀-W) = ma
the part in parentheses is zero since it is the force when it is in equilibrium
ρ_fluid g A y = m a
this equation the net force is
= ( ρ_fluid g A) y
we can see that this force varies linearly the distance and measured from the equilibrium position
Answer:
WHat do you mean by that
Explanation:
I dont get what you re asking
1 mile = 1.609 km
(135,000 km) x (1 mile / 1.609 km) = 83,885.1 miles
Answer: The rating scale that is used in food history inventory is from 1 to 8.
Explanation:
In this case the participants have to rate 24 items on a scale of 1 to 8.There are variety of questions related to food or fooding habits.
The questions like do you go out for food?
Do you like bread ? if yes how will you rate it on a scale of 1 to 8.
The questions like this has to be answered in a way . It is done in order to see the preferences and false memory regarding the food preference that people have.
Mr. Roentgen's x-rays allowed scientists to measure the size of the atom. The x-rays were small enough to discern the atomic clouds. This was done by scattering x-rays from atoms and measuring their size just as Rutherford had done earlier by hitting atoms with other nuclei starting with alpha particles.