Think of the formula force=mass x acceleration. even though they have the same acceleration, a train has more mass. is that helpful?
Answer:
The attached diagram explains the system,
Sum of Fy = 0
N=9.81
N - mgCos60 = 0
F= ukN= (0.53)(9.81) =
F= 5.12 N
So
F.d= 1/2(mv.v) - mgdsin60
-5.12*0.5 = 0.5*v^2 - 2*(9.81)*(0.5*sin60)
(a) v = 2.436 m/s
For deflection
-F.x = 1/2(mv.v) - mgxsin60 + 1/2 (k*x*x)
by solving for with values of v, m, g, F, k
800x^2 - 11.87 x - 5.938 = 0
by solving the quadratic equation
x = 0.093, -0.079
(b) x = 0.093 m
correct Answer is 0.093m
Explanation:
Answer:
The number of complete vibration or wave made in
one second is called frequency.
Both hits the ground <u>at the same time</u> because they have <u>same vertical acceleration</u>
<u></u>
<h3>What is vertical acceleration?</h3>
A vertical acceleration is typically one for which the direction of the vector is vertically upward, usually aligned with and opposite to the gravity vector. But this is a descriptive term, not a rigorous or technical term. A car may accelerate along a road and that would generally be assumed to be a horizontal.
The vector perpendicular to this direction, as perhaps a suspension motion over a bump, would be described as vertical even if it is not strictly vertical.
Note that acceleration is defined as the rate of change of the velocity vector. But the gravitation vector, ‘g’, generally vertically downward, is often denoted by what acceleration a mass in free fall (absent air resistance) would experience, i.e. the relationship between mass and weight.
Learn more about vertical acceleration
brainly.com/question/19528199
#SPJ4