Answer:

Explanation:
Since the system is in international space station
so here we can say that net force on the system is zero here
so Force by the astronaut on the space station = Force due to space station on boy
so here we know that
mass of boy = 70 kg
acceleration of boy = 
now we know that


now for the space station will be same as above force




The answer for this question should be "false".
Answer:
248
Explanation:
L = Inductance of the slinky = 130 μH = 130 x 10⁻⁶ H
= length of the slinky = 3 m
N = number of turns in the slinky
r = radius of slinky = 4 cm = 0.04 m
Area of slinky is given as
A = πr²
A = (3.14) (0.04)²
A = 0.005024 m²
Inductance is given as


N = 248
Answer:
a) Eₓ = - A y + 2B x
, b) Ey = -Ax –C
, c) Ez = 0
, d) The correct answer is 3
Explanation:
The electric field and the electric power are related
E = - dV / ds
a) Let's find the electric field on the x axis
Eₓ = - dV / dx
dV / dx = A y - B 2x
Eₓ = - A y + 2B x
b) calculate the electric field on the y-axis
Ey = - dV / dy
dV / dy = A x + C
Ey = -Ax –C
c) the electric field on the z axis
dv / dz = 0
Ez = 0
.d) at which point the electric field is zero
Since the electric field is a vector quantity all components must be zero
X axis
0 = = - A y + 2B x
y = 2B / A x
Axis y
0 = -Ax –C
.x = -C / A
We substitute this value in the previous equation
.y = 2B / A (-C / A)
.y = 2 B C / A2
The correct answer is 3