Answer:
False
Explanation:
Since it is on the bus, it would not move forward because the outside acceleration cannot be considered.
Answer:
a) the frequency of the wave is 0.2 Hz
b) the speed of the wave 4 m/s
Explanation:
Given that;
time period = to complete one cycle t = 5 sec
frequency f = 1/t
frequency f = 1 / 5sec
f = 0.2 Hz
Therefore the frequency of the wave is 0.2 Hz
b)
speed of wave V = λf
given that our wavelength is 20.0 m
we substitute
speed of wave V = 20.0 × 0.2
speed of wave V = 4 m/s
Therefore, the speed of the wave 4 m/s
Answer:
binoculars
Explanation: I am taking astronomy
Answer:
When a body is placed on a table top, it exerts a force equal to its weight downwards on the table top but does not move or fall. (i) Name the force exerted ...
Answer:
27°C
Explanation:
We'll begin by converting 27 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
Initial temperature (T₁) = 27 °C
Initial temperature (T₁) = 27 °C + 273
Initial temperature (T₁) = 300 K
Next, we shall determine the final temperature of the gas. This can be obtained as follow:
Initial volume (V₁) = 2 m³
Initial temperature (T₁) = 300 K
Initial pressure (P₁) = 1 atm
Final pressure (P₂) = 2 atm
Final volume (V₂) = 1 m³
Final temperature (T₂) =?
P₁V₁/T₁ = P₂V₂/T₂
1 × 2 / 300 = 2 × 1 / T₂
2/300 = 2/T₂
1/150 = 2/T₂
Cross multiply
T₂ = 150 × 2
T₂ = 300 K
Finally, we shall convert 300 K to celsius temperature. This can be obtained as follow:
T(°C) = T(K) – 273
T(K) = 300 K
T(°C) = 300 – 273
T(°C) = 27°C
Thus, the final temperature is 27°C