Answer:
0.7 secs
Explanation:
In this question, the speed does not change as the mass changes. So we can use
Δ<em>t=Δ∨x/χgμ............................equ 1</em>
To stop, the final speed will be 0
Therefore,
<em>Δvx=vf-vt</em>
Δvx=0-4m/s
= -4m/s
Now substitute the various values in equ 1
Δ<em>t=Δ∨x/χgμ</em>
Δ<em>t= -</em>4m/s/(9.8m/s∧2) (0.6)
Δ<em>t=</em>0.7 secs
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
I = pressure amplitude given = 0.2 W/m²
dB = decibel reading
decibel reading from the pressure amplitude is given as
dB = 10 log₁₀ (I/10⁻¹²)
inserting the values in the above equation
dB = 10 log₁₀ (0.2/10⁻¹²)
dB = 10 log₁₀ (2 x 10⁻¹/10⁻¹²)
dB = 10 log₁₀ (2 x 10⁻¹.10¹²)
dB = 10 log₁₀ (2 x 10¹²⁻¹)
dB = 10 log₁₀ (2 x 10¹¹)
dB = 113.01 db
hence the decibel reading comes out to be 113.01 db
Answer:
The magnitude of the impulse delivered to the baseball is 7.0 Ns
Explanation:
Given;
mass of the foul ball, m = 0.14 kg
initial velocity, u = 40 m/s
final velocity, v = 30 m/s in perpendicular direction
Impulse is given as change in momentum;
initial momentum in horizontal direction, Pi = mu
Pi = 0.14 x 40 = 5.6 Ns
final momentum in perpendicular direction, Pf = mv
Pf = 0.14 x 30
Pf = 4.2 Ns
The resultant impulse is given by;
J² = 5.6² + 4.2²
J² = 49
J = √49
J = 7.0 Ns
Therefore, the magnitude of the impulse delivered to the baseball is 7.0 Ns