Explanation:
velocity of disc 
lets call (h) 1 m to make it simple.
= 3.614 m/s
m/s pointing towards this:


velocity of hoop=
lets call (h) 1m to make it simple again.
m/s
![\sqrt(gh) = sqrt(hg)so [tex]4×V_d= \sqrt(4/3hg)V_h=\sqrt(hg)](https://tex.z-dn.net/?f=%5Csqrt%28gh%29%20%3D%20sqrt%28hg%29%3C%2Fp%3E%3Cp%3Eso%20%5Btex%5D4%C3%97V_d%3D%20%5Csqrt%284%2F3hg%29V_h%3D%5Csqrt%28hg%29)
The disc is the fastest.
While i'm on this subject i'll show you this:
Solid ball 
solid disc 
hoop 
The above is simplified from linear KE + rotational KE, the radius or mass makes no difference to the above formula.
The solid ball will be the faster of the 3, like above i'll show you.
solid ball: velocity 
let (h) be 1m again to compare.
m/s
solid disk speed 
uniform hoop speed 
solid sphere speed 
Moving clouds. The doppler effect is specifically used to measure motion.
Correct answer: B
The force of gravity acting on the object on the moon can be found by multiplying its mass by the acceleration due to gravity on the moon. The acceleration due to gravity on the moon is a constant and is approximately 1.63m/s².
120kg×1.63m/s²=195.6kg.m/s²
kg.m/s²=N
<span>The force of gravity acting on the object on the moon would be of approximately 196N.</span>
Answer:
12.5m/s
Explanation:
(Assuming the question was asking for the speed just before it hit the ground)
We can use the first key equation of accelerated motion
Vf^2 = Vi^2+2aΔd
Vf^2 = 0 + 2(9.8)(8) (plugged in values, initial velocity is 0 since the ball was at rest)
Vf^2 = 156.8
Vf = 12.5 (squared both sides)
Answer:
P and S waves slow down when they reach this layer. The asthenosphere, also known as the magma chamber, is the uppermost component of the mantle. This layer is partially molten and is a ductile zone in a tectonically poor state.
It's almost hard and seismic waves move through the asthenosphere at a slow rate. The fragile lithosphere and the uppermost portion of the asthenosphere are assumed to be rigid.
seismic waves travel more quickly through denser materials and therefore generally travel more quickly with the depth it moves more slowly through a liquid than a solid. Molten areas within the Earth slow down P waves and stop S waves because their shearing motion cannot be transmitted through a liquid. Partially molten areas may slow down the P waves and attenuate or weaken S waves.
hope this helps...