Answer:
1845.26 ?
Explanation:
18.46 × 99.96= 1845.2616 = 1845.26
im not entirely sure though
(a) The system of interest if the acceleration of the child in the wagon is to be calculated are the wagon and the children outside the wagon.
(b) The acceleration of the child-wagon system is 0.33 m/s².
(c) Acceleration of the child-wagon system is zero when the frictional force is 21 N.
<h3>
Net force on the third child</h3>
Apply Newton's second law of motion;
∑F = ma
where;
- ∑F is net force
- m is mass of the third child
- a is acceleration of the third child
∑F = 96 N - 75 N - 12 N = 9 N
Thus, the system of interest if the acceleration of the child in the wagon is to be calculated are;
- the wagon
- the children outside the wagon
<h3>Free body diagram</h3>
→ → Ф ←
1st child friction wagon 2nd child
<h3>Acceleration of the child and wagon system</h3>
a = ∑F/m
a = 9 N / 27 kg
a = 0.33 m/s²
<h3>When the frictional force is 21 N</h3>
∑F = 96 N - 75 N - 21 N = 0 N
a = ∑F/m
a = 0/27 kg
a = 0 m/s²
Learn more about net force here: brainly.com/question/14361879
#SPJ1
<h2>
Answer: 277.777 m</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told that the rock was<u> projected upward from the surface</u>, we will only use the equations related to the Y axis.
In this sense, the movement equations in the Y axis are:
(1)
(2)
Where:
is the rock's final position
is the rock's initial position
is the rock's initial velocity
is the final velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of the moon
As we know
, equation (2) is rewritten as:
(3)
On the other hand, the maximum height is accomplished when
:
(4)
(5)
Finding
:
(6)
Substituting (6) in (3):
(7)
(8) Now we can calculate the maximum height of the rock
(9)
Finally:
For every O ion, two Na ions are needed to balance charges. Which ratio represents the relationship between Na and O?
2 Na:1 O