Explanation:
We have,
Speed of plane a is 900 km/h
Plane b is moving at a rate of 
It is required to find which plane is faster. To find which plane is faster, we need to compare their speeds.
Speed of a plane a is 900 km/h and that of plane b is 50 km/h. So, we can say that plane a is moving faster.
E = hf, and h is the Planck's constant. When larger frequency is needed, more energy will also be needed. Since the blue light has the higher frequency, it would be the<span> level X to Y's transition which is the one that has the highest energy difference.
</span>
<span>I am hoping that
this answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.</span>
The second ionization energy is the energy required to remove the <u>second </u>electron after a <u>valence</u> one has been removed.
<h3><u>Explanation:</u></h3>
For an element, the first ionization energy is defined as the amount of energy required to remove one electron from the outermost valence shell of a neutral atom. Removing one electron increases the number of protons, making it a 1+ ion.
The nucleus (protons) has more bonding to the electrons with negative charge and thus more energy is required if another electron needs to be removed. This higher energy required to remove second electron from a 1+ ion (after the first one has been removed) is termed as the second ionization energy. Second ionization energy leads to formation of a 2+ ion. Similarly, third ionization energy is higher than second ionization energy.
Answer:
<h3>displacement can be zero...because it only care about initial and final positions</h3>
The trade winds are located about 30 degrees north and south of the equator.