Answer:
f = pl / (l + p)
Explanation:
1/f = 1/p + 1/l
Find the common denominator of the right hand side.
1/f = l/(pl) + p/(pl)
Add:
1/f = (l + p) / (pl)
Take the inverse of both sides:
f = pl / (l + p)
The child's linear speed is
<em> (pi / 5) x (the child's distance from the center of the ride, in feet)</em>
feet per second.
Answer:
2.5 m/s²
Explanation:
Using the formula, v = u + at ( v = Final velocity; u = Initial velocity; t = Time; a = Acceleration)
25 = 0 + 10a
a = 25/10 = 2.5 m/s²
Answer:
A. Kinetic energy is converted to electric potential energy, and the proton moves more slowly.
Explanation:
When a moving proton is brought close to a stationary one, the kinetic energy of the moving one is converted to electric potential and the proton moves more slowly.
Kinetic energy is the energy due to the motion of a body. A moving proton will possess this form of energy.
Two protons according to coulombs law will repel each other with an electrostatic force because they both have similar charges. This will increase their electric potential energy of both of them.
Potential energy is the energy at rest of a body. As it increases, the motion of a body will be slower and it will tend towards being stationary.
The main formula is given by Eb/nucleon = Eb/ mass of nucleid
as for <span>52He, the mass is 5
so by applying Einstein's formula Eb=DmC², Eb=</span><span>binding energy
</span><span>52He-----------> 2 x 11p + 3 x10n is the equation bilan
</span>so Dm=2 mp + (5-2)mn-mnucleus, mp=mass of proton=1.67 10^-27 kg
mn=mass of neutron=<span>1.67 10^-27 kg
</span><span>m nucleus= 5
Dm= 2x</span>1.67 10^-27 kg+ 3x<span>1.67 10^-27 kg-5= - 4.9 J
Eb= </span> - <span>4.9 J x c²= -4.9 x 9 .10^16= - 45 10^16 J
so the answer is Eb /nucleon = Eb/5= -9.10^16 J, but 1eV=1.6 . 10^-19 J
so </span><span>-9.10^16 J/ 1.6 10^-19= -5.625 10^35 eV
the final answer is </span><span>Eb /nucleon </span><span>= -5.625 x10^35 eV</span>