1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
4 years ago
11

A turtle and a rabbit are in a 150 meter race. The rabbit decides to give the turtle a 1 minute head start. The turtle moves at

a constant speed of 0.500 m/s through the whole race (in fact the turtle even starts at a velocity of 0.500 m/s as while he was still approaching the starting line he was allowed to continue to keep going without stopping). The rabbit starts the race from rest and accelerates at a rate or 1.50 m/s2 until she reaches her top speed of 10 m/s. She then finishes the race running at a constant speed of 10 m/s. a) What is the turtle’s position when the rabbit starts to run (1 minute into the race)? b) How long does it take the turtle to finish the race? c) How long does it take the rabbit to reach max speed? d) What is the rabbit’s position when she reaches max speed? e) How long does it take the rabbit to finish the race? f) Who won?
Physics
1 answer:
yan [13]4 years ago
7 0

Answer:

a) s_{T} = 30\,m, b) t = 5\,min, c) \Delta t = 6.667\,s, d) \Delta s_{R} = 33.333\,m, e) t' = 11.667\,s, f) The rabbit won the race.

Explanation:

a) As turtle moves at constant speed, its position is determined by the following formula:

s_{T} = v_{T}\cdot t

Where:

t - Time, measured in seconds.

v_{T} - Velocity of the turtle, measured in meters per second.

s_{T} - Position of the turtle, measured in meters.

Then, the position of the turtle when the rabbit starts to run is:

s_{T} = \left(0.5\,\frac{m}{s} \right)\cdot (60\,s)

s_{T} = 30\,m

The position of the turtle when the rabbit starts to run is 30 meters.

b) The time needed for the turtle to finish the race is:

t = \frac{s_{T}}{v_{T}}

t = \frac{150\,m}{0.5\,\frac{m}{s} }

t = 300\,s

t = 5\,min

The time needed for the turtle to finish the race is 5 minutes.

c) As rabbit experiments a constant acceleration until maximum velocity is reached and moves at constant speed afterwards, the time required to reach such speed is:

v_{R} = v_{o,R} + a_{R}\cdot \Delta t

Where:

v_{R} - Final velocity of the rabbit, measured in meters per second.

v_{o,R} - Initial velocity of the rabbit, measured in meters per second.

a_{R} - Acceleration of the rabbit, measured in \frac{m}{s^{2}}.

\Delta t - Running time, measured in second.

\Delta t = \frac{v_{R}-v_{o,R}}{a_{R}}

\Delta t = \frac{10\,\frac{m}{s}-0\,\frac{m}{s}}{1.50\,\frac{m}{s^{2}} }

\Delta t = 6.667\,s

The time taken by the rabbit to reach maximum speed is 6.667 s.

d) On the other hand, the position reached by the rabbit when maximum speed is reached is determined by the following equation of motion:

v_{R}^{2} = v_{o,R}^{2} + 2\cdot a_{R}\cdot \Delta s_{R}

\Delta s_{R} = \frac{v_{R}^{2}-v_{o,R}^{2}}{2\cdot a_{R}}

\Delta s_{R} = \frac{v_{R}^{2}-v_{o,R}^{2}}{2\cdot a_{R}}

Where \Delta s_{R} is the travelled distance of the rabbit from rest to maximum speed.

\Delta s_{R} = \frac{\left(10\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{2\cdot \left(1.50\,\frac{m}{s^{2}} \right)}

\Delta s_{R} = 33.333\,m

The distance travelled by the rabbit from rest to maximum speed is 33.333 meters.

e) The time required for the rabbit to finish the race can be determined by the following expression:

t' = \frac{\Delta s_{R}}{v_{R}}

t' = \frac{150\,m-33.333\,m}{10\,\frac{m}{s} }

t' = 11.667\,s

The time required for the rabbit from rest to maximum speed is 11.667 seconds.

f) The animal with the lowest time wins the race. Now, each running time is determined:

Turtle:

t_{T} = 300\,s

Rabbit:

t_{R} = 60\,s + 6.667\,s + 11.667\,s

t_{R} = 78.334\,s

The rabbit won the race as t_{R} < t_{T}.

You might be interested in
A rock exerts 5000 Pa of pressure on the ground. If the rock weighs 250 N, how much area is in contact with the ground?
ololo11 [35]

P = F/S - S = F/P = 250/5000= 0.05 m2

4 0
3 years ago
Read 2 more answers
How does the vertical component of a projectile’s motion compare with the motion of vertical free fall when air resistance is ne
likoan [24]

Answer:

Explanation:

The vertical component of velocity remains same as the free fall. The vertical motion of the projectile is same as the free fall motion.

5 0
3 years ago
1. A force acting on an object in the upward direction is 3 N. The force that would
DENIUS [597]

Answer:

See the explanation below

Explanation:

We must perform a sum of forces on the body, that sum of forces is equal to zero. That is, the body is in balance and does not move.

ΣF = 0

3 - 3 = 0

This force is negative and acts by pointing downwards.

4 0
3 years ago
Read 2 more answers
Use the drop-down menus to identify the parts of the
DochEvi [55]

Answer:

Label A: Battery, Label B: Light or Bulb, Label C: Switch

Explanation:

I got it right.

5 0
3 years ago
Label the sound wave-   amplitude, wavelength,  crest, trough​
enot [183]

Answer:

A - Crest,  B - amplitude,  C - wavelength,  D - trough

Explanation:

7 0
3 years ago
Other questions:
  • Assume that the wavelengths of photosynthetically active radiations (PAR) are uniformly distributed at integer nanometers in the
    10·1 answer
  • Which arrangement in relative size is correct? (&lt; sign means 'smaller than')
    12·2 answers
  • When walking barefoot, Kevin can walk across the grass easily, but when he crosses the paved street, the street is hot and burns
    7·1 answer
  • What causes a bolt of lightning
    7·2 answers
  • The cars salemens tells you that the car can go from a stopped position to 60 miles per hour in 6 seconds he is giving you the c
    14·1 answer
  • What is the mass of an object that requires 100N of force in order to accelerate it at 10m/s2 ?
    8·2 answers
  • A 3,000-N force acts on a 200-kg object, what is the acceleration?​
    14·2 answers
  • Consider the following hypothetical subject performing the EMG laboratory: Immediately after the subject's maximum grip strength
    10·1 answer
  • Why do electrons flow around a circuit when the circuit is complete?
    6·1 answer
  • A sinusoidal wave of wavelength 2.00m and amplitude 0.100 m travels on a string with a speed of 1.00 m/s to the right. At t = 0
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!