1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
11

A turtle and a rabbit are in a 150 meter race. The rabbit decides to give the turtle a 1 minute head start. The turtle moves at

a constant speed of 0.500 m/s through the whole race (in fact the turtle even starts at a velocity of 0.500 m/s as while he was still approaching the starting line he was allowed to continue to keep going without stopping). The rabbit starts the race from rest and accelerates at a rate or 1.50 m/s2 until she reaches her top speed of 10 m/s. She then finishes the race running at a constant speed of 10 m/s. a) What is the turtle’s position when the rabbit starts to run (1 minute into the race)? b) How long does it take the turtle to finish the race? c) How long does it take the rabbit to reach max speed? d) What is the rabbit’s position when she reaches max speed? e) How long does it take the rabbit to finish the race? f) Who won?
Physics
1 answer:
yan [13]3 years ago
7 0

Answer:

a) s_{T} = 30\,m, b) t = 5\,min, c) \Delta t = 6.667\,s, d) \Delta s_{R} = 33.333\,m, e) t' = 11.667\,s, f) The rabbit won the race.

Explanation:

a) As turtle moves at constant speed, its position is determined by the following formula:

s_{T} = v_{T}\cdot t

Where:

t - Time, measured in seconds.

v_{T} - Velocity of the turtle, measured in meters per second.

s_{T} - Position of the turtle, measured in meters.

Then, the position of the turtle when the rabbit starts to run is:

s_{T} = \left(0.5\,\frac{m}{s} \right)\cdot (60\,s)

s_{T} = 30\,m

The position of the turtle when the rabbit starts to run is 30 meters.

b) The time needed for the turtle to finish the race is:

t = \frac{s_{T}}{v_{T}}

t = \frac{150\,m}{0.5\,\frac{m}{s} }

t = 300\,s

t = 5\,min

The time needed for the turtle to finish the race is 5 minutes.

c) As rabbit experiments a constant acceleration until maximum velocity is reached and moves at constant speed afterwards, the time required to reach such speed is:

v_{R} = v_{o,R} + a_{R}\cdot \Delta t

Where:

v_{R} - Final velocity of the rabbit, measured in meters per second.

v_{o,R} - Initial velocity of the rabbit, measured in meters per second.

a_{R} - Acceleration of the rabbit, measured in \frac{m}{s^{2}}.

\Delta t - Running time, measured in second.

\Delta t = \frac{v_{R}-v_{o,R}}{a_{R}}

\Delta t = \frac{10\,\frac{m}{s}-0\,\frac{m}{s}}{1.50\,\frac{m}{s^{2}} }

\Delta t = 6.667\,s

The time taken by the rabbit to reach maximum speed is 6.667 s.

d) On the other hand, the position reached by the rabbit when maximum speed is reached is determined by the following equation of motion:

v_{R}^{2} = v_{o,R}^{2} + 2\cdot a_{R}\cdot \Delta s_{R}

\Delta s_{R} = \frac{v_{R}^{2}-v_{o,R}^{2}}{2\cdot a_{R}}

\Delta s_{R} = \frac{v_{R}^{2}-v_{o,R}^{2}}{2\cdot a_{R}}

Where \Delta s_{R} is the travelled distance of the rabbit from rest to maximum speed.

\Delta s_{R} = \frac{\left(10\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{2\cdot \left(1.50\,\frac{m}{s^{2}} \right)}

\Delta s_{R} = 33.333\,m

The distance travelled by the rabbit from rest to maximum speed is 33.333 meters.

e) The time required for the rabbit to finish the race can be determined by the following expression:

t' = \frac{\Delta s_{R}}{v_{R}}

t' = \frac{150\,m-33.333\,m}{10\,\frac{m}{s} }

t' = 11.667\,s

The time required for the rabbit from rest to maximum speed is 11.667 seconds.

f) The animal with the lowest time wins the race. Now, each running time is determined:

Turtle:

t_{T} = 300\,s

Rabbit:

t_{R} = 60\,s + 6.667\,s + 11.667\,s

t_{R} = 78.334\,s

The rabbit won the race as t_{R} < t_{T}.

You might be interested in
When a boat is placed in liquid, two forces act on the boat. Gravity pulls the boat down with a force equal to the weight of the
wel

Answer:

the fraction of submerged volume is equal to the ratio of the densities of the body between the density of the fluid.

Explanation:

This is a fluid mechanics problem, where as the boat is in equilibrium with the pushing force we can write Newton's second law

                  B- W = 0

                  B = W

           

the thrust force is equal to the weight of the liquid that is dislodged

                  B = ρ g V

we substitute

             ρ g V = m g

             V = m /ρ_fluid          1

we can write the mass of the pot as a function of its density

             ρ_body = m / V_body

            m = ρ_body  V_body

             V_fluid / V_body = ρ_body / ρ _fluid         2

Equations 1 and 2 are similar, although 2 is easier to analyze, the fraction of submerged volume is equal to the ratio of the densities of the body between the density of the fluid.

The effect appears the pot as if it had a lower apparent weight

3 0
3 years ago
You stand on a frictional platform that is rotating at 1.1 rev/s. Your arms are outstretched, and you hold a heavy weight in eac
bezimeni [28]

Answer:

a) The resulting angular speed of platform is 1.38 rev/sec

b) The change in kinetic energy of the system is 53 J.

Explanation:

This question is incomplete. The complete question will be:

You stand on a frictional platform that is rotating at 1.1 rev/s. Your arms are outstretched, and you hold a heavy weight in each hand. The moment of inertia of you, the extended weights, and the platform is 8.8 kg · m2. When you pull the weights in toward your body, the moment of inertia decreases to  7.0 k g .m 2  

a) What is the resulting angular speed of the platform? Answer in units of r e v / s .

b)What is the change in kinetic energy of the system? Answer in units of J.

<h3>ANSWER:</h3>

a)

we know that:

Angular Momentum = L = Iω

From conservation of momentum:

Lo = Lf

(Io) (ωo) = (If) (ωf)

ωf = (Io) (ωo)/(If)

ωf = (8.8 kg.m²)(1.1 rev/s)/(7.0 kg.m²)

<u>ωf = 1.38 rev/sec =</u>

b)

ωf = (1.38 rev/sec)(2π rad/ 1 rev) = 8.67 rad/sec

ωo = (1.1 rev/sec)(2π rad/ 1 rev) = 6.91 rad/sec

The kinetic energy for rotational motion is given as:

K.E = (1/2)Iω²

Thus, the change in kinetic energy will be:

ΔK.E = (K.E)f - (K.E)o

ΔK.E = (1/2)Ifωf² - (1/2)Ioωo²

ΔK.E = (1/2)(Ifωf² - Ioωo²)

ΔK.E = (1/2)[(7 kg.m²)(8.67 rad/sec)² - (8.8 kg.m²)(6.91 rad/sec)²

<u>ΔK.E = 53 J</u>

5 0
3 years ago
Which of the following has the greatest amount of kinetic energy a)slice of pizza b)a person at the top of the stairs c)wind d)a
Talja [164]

Answer:

c)wind

Explanation:

Wind from the given choices will have the greatest amount of kinetic energy.

Kinetic energy is the energy due to motion of a body. It is different from the energy at rest in a body.

  • Wind is air in motion.
  • Wind energy is a form of kinetic energy in motion.

A book on a table, a slice of pizza and a person at the top of the stairs are all at rest and will possess potential energy.

7 0
3 years ago
Which method can be used for separating a mixture of sand and salt?
Veronika [31]
Answers A and C can be automatically eliminated because evaporation has to do with the water cycle and magnetism has to do with electric current and such. Next we can eliminate B or distillation because it also has to do with water/liquids. Therefore, the answer is D or filtration because it is the only answer left.

I hope this helps!
6 0
3 years ago
Read 2 more answers
The displacement of a car is a function of time as follows: x(t)=25+3.0t², with x is in meters. Find the average velocity betwee
aniked [119]

Answer: 15m/s

Explanation: <u>Average</u> <u>Velocity</u> is vector describing the total displacement of an object and the time taken to change its position. It is represented as:

v=\frac{\Delta x}{\Delta t}

At t₁ = 1.0s, displacement x₁ is:

x(1)=25+3(1)^{2}

x(1) = 28

At t₂ = 4.0s:

x(4)=25+3(4)^{2}

x(4) = 73

Then, average speed is

v=\frac{73-28}{4-1}

v = 15

The average velocity of a car between t₁ = 1s and t₂ = 4s is 15m/s

5 0
2 years ago
Other questions:
  • PART ONE
    9·1 answer
  • Explain why solar energy is considered an inexhaustible source of energy
    10·1 answer
  • A collar A of mass m is moving with a speed v when it strikes an identical collar B that is at rest. Knowing that the coefficien
    6·1 answer
  • What is surface tension<br><br>​
    5·1 answer
  • A 0.250-kg ball is thrown upwards with an initial velocity of 12.0 m/s Determine the acceleration of the ball when it has reache
    6·1 answer
  • Name three situations in which force is created. Describe the cause of the
    11·2 answers
  • Indirect economic value to Steven and his family,
    9·2 answers
  • SOLVE THE PROBLEM
    5·1 answer
  • An object weighs 250N and has a mass of 75 kg. what is the gravity on this planet?
    10·1 answer
  • What is the best prediction for what will happen when all of the hydrogen in the sun has undergone fusion? helium nuclei will sp
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!