Answer:
219.9208 m
Explanation:
The new length is given by
New length= Original length *(1-Temperature change*coefficient of
thermal expansion of steel)
Here, the change in temperature is 
New length= 
Therefore, the new length will be 219.9208 m
In component form, the displacement vectors become
• 350 m [S] ==> (0, -350) m
• 400 m [E 20° N] ==> (400 cos(20°), 400 sin(20°)) m
(which I interpret to mean 20° north of east]
• 550 m [N 10° W] ==> (550 cos(100°), 550 sin(100°)) m
Then the student's total displacement is the sum of these:
(0 + 400 cos(20°) + 550 cos(100°), -350 + 400 sin(20°) + 550 sin(100°)) m
≈ (280.371, 328.452) m
which leaves the student a distance of about 431.8 m from their starting point in a direction of around arctan(328.452/280.371) ≈ 50° from the horizontal, i.e. approximately 431.8 m [E 50° N].
Answer:
The focal lenth (F) =+10.0cm
Explanation:
The formular for combined focal length (F) is given as;

In this question,
F1 = 20cm
F2 = -30cm
Plugging the values into the formuar above,

![1/f = 0.05 - 0.033[tex]1/f = -0.017f = [tex]1/ -0.017](https://tex.z-dn.net/?f=1%2Ff%20%3D%200.05%20-%200.033%3C%2Fp%3E%3Cp%3E%5Btex%5D1%2Ff%20%3D%20-0.017%3C%2Fp%3E%3Cp%3Ef%20%3D%20%5Btex%5D1%2F%20-0.017)
f = 58.82cm
i.e. the combination behaves as a converging lens (because of the postive sign) of focal length 58.82cm .
Answer:
C. while the magnet is moving
Explanation:
Electromagnetic induction implies the production of electric current by mere movement of a magnet with respect to a coil or wire.
In the given question, current would be induced in the wire only when the magnet moves. That is either when the magnet is pushed into a wire, or when pulled out. But no current would flow through the wire when the magnet is left there for a while.
The current is induced because of the motion involved. Thus, the appropriate option is C.