In general, that's not possible, unless the three numbers relate to
very specific quantities.
For example, if the three numbers are the object's height, temperature,
and cost, then they are of no help at finding the object's velocity.
Answer:
123.30 m
Explanation:
Given
Speed, u = 22 m/s
acceleration, a = 1.40 m/s²
time, t = 7.30 s
From equation of motion,
v = u + at
where,
v is the final velocity
u is the initial velocity
a is the acceleration
t is time
V = at + U
using equation v - u = at to get line equation for the graph of the motion of the train on the incline plane
where m is the slope
Comparing equation (1) and (2)

a = m
Since the train slows down with a constant acceleration of magnitude 1.40 m/s² when going up the incline plane. This implies the train is decelerating. Therefore, the train is experiencing negative acceleration.
a = - 1.40 m/s²
Sunstituting a = - 1.40 m/s² and u = 22 m/s


The speed of the train at 7.30 s is 11.78 m/s.
The distance traveled after 7.30 sec on the incline is the area cover on the incline under the specific interval.
Area of triangle + Area of rectangle
![[\frac{1}{2} * (22 - 11.78) * (7.30)] + [(11.78 - 0) * (7.30)]](https://tex.z-dn.net/?f=%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%2822%20-%2011.78%29%20%2A%20%287.30%29%5D%20%20%2B%20%5B%2811.78%20-%200%29%20%2A%20%287.30%29%5D)
= 37.303 + 85.994
= 123. 297 m
≈ 123. 30 m
Answer:
5.972x10^27 x 10^-3 = 5.972x10^24
Explanation:
1g = 10^-3 kg => So the mass of Earth in kg is 5.972x10^24
You can tell because the line bends and the closer it is to horizontal or past horizontal it is more dense
Answer:
centripetal force is a net force that acts on an object to keep it moving along a circular path and elastic force acts to return a spring to its natural length