Answer:
2 m/s²
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 12 m/s
Time (t) = 6 s
Acceleration (a) =?
The acceleration of the player can be obtained as follow:
v = u + at
12 = 0 + (a × 6)
12 = 6a
Divide both side by 6
a = 12 / 6
a = 2 m/s²
Thus, the acceleration of the player is 2 m/s²
More, fewer electrons than object is neutral
Answer:
Explanation:
The total energy of an electron in an orbit consists of two components
1 ) Potential energy which is - ve because the field is attractive
2) Kinetic energy which represents moving electron having some velocity.
Kinetic is always positive.
3 ) In an orbit , The magnitude of potential energy is twice that of kinetic energy. So if -2E is the value of potential energy E wil be the value of kinetic energy.
4 ) Total energy will become some of potential energy and kinetic energy
-2E + E = -E
5 ) So total energy becomes equal to kinetic energy with only sign reversed.
In the given case total energy is -0.28 eV . Hence kinetic energy will be +0.28 eV.
When kinetic energy is calculated as +.28 eV , the potential energy will be
- 2 x .28 or - 0.56 eV .
The correct answer is A) <span>The two magnetic fields repel each other, causing the train to levitate, or hover, above the rails.
In fact, same magnetic poles repel each other, while opposite magnetic poles attract each other. the magnets on bottom of the train and on top of the railway have the same polarities, so they repel each other and this allows the train to levitate.
</span>