Given that the density of heptane is

The mass of heptane is

The density of water is

The mass of water is

The volume of heptane will be

The volume of water will be

Thus, the volume of heptane is 45.32 mL and the volume of water is 37 mL.
The total volume of liquid in the cylinder will be

The total volume of liquid in the cylinder will be 82.32 mL.
The only thing that definitely happens in every such case is:
The container becomes heavier.
3-6 seconds time interval is the object slowing down.
The correct option is C.
<h3>What is a time interval?</h3>
The time interval is the span of time among two specified times. To put it another way, it is the amount of time that has passed between the event's start and finish.
<h3>What are different time intervals?</h3>
The time interval is the length of time that the aim uses to gather data and determine values. The critical overview can be one or more seconds, minutes, hours, days, weeks, or months. The period must be greater than zero and positive. When providing minutes, the amount of minutes must divide evenly by 60.
To know more about Time interval visit:
brainly.com/question/28238258
#SPJ13
The complete question is -
During which time interval is the object slowing down ?
a- 8-10 seconds
b- 6-8 seconds
c- 3-6 seconds
d- 0-3 seconds
From rest, a rock is dropped from a garage roof. The roof is 6.0 meters above ground level. The rock will reach the earth at a speed of 10.849 meters per second.
<h3>What is velocity?</h3>
The change of displacement with respect to time is defined as the velocity. Velocity is a vector quantity.
it is a time-based component. Velocity at any angle is resolved to get its component of x and y-direction.
Given data:
V(Final velocity)=? (m/sec)
h(height)= 6.0 m
u(Initial velocity)=0 m/sec
g(gravitational acceleration)=9.81 m/s²
Newton's third equation of motion:

Hence, the velocity of the rock as it hits the ground will be 10.849 m/sec.
To learn more about the velocity refer to the link ;
brainly.com/question/862972
#SPJ1
Answer:
Part a: When the road is level, the minimum stopping sight distance is 563.36 ft.
Part b: When the road has a maximum grade of 4%, the minimum stopping sight distance is 528.19 ft.
Explanation:
Part a
When Road is Level
The stopping sight distance is given as

Here
- SSD is the stopping sight distance which is to be calculated.
- u is the speed which is given as 60 mi/hr
- t is the perception-reaction time given as 2.5 sec.
- a/g is the ratio of deceleration of the body w.r.t gravitational acceleration, it is estimated as 0.35.
- G is the grade of the road, which is this case is 0 as the road is level
Substituting values

So the minimum stopping sight distance is 563.36 ft.
Part b
When Road has a maximum grade of 4%
The stopping sight distance is given as

Here
- SSD is the stopping sight distance which is to be calculated.
- u is the speed which is given as 60 mi/hr
- t is the perception-reaction time given as 2.5 sec.
- a/g is the ratio of deceleration of the body w.r.t gravitational acceleration, it is estimated as 0.35.
- G is the grade of the road, which is given as 4% now this can be either downgrade or upgrade
For upgrade of 4%, Substituting values

<em>So the minimum stopping sight distance for a road with 4% upgrade is 528.19 ft.</em>
For downgrade of 4%, Substituting values

<em>So the minimum stopping sight distance for a road with 4% downgrade is 607.59 ft.</em>
As the minimum distance is required for the 4% grade road, so the solution is 528.19 ft.