OzsnuhgnowgnwrfoqingoiwrgWWR KEFQF QEFI FBI O8QE VU F8EINFOQIHWJ OU JN K kjbJ IUJ j osd sfljvbwj 9 oirs jf bhfb wjsf jfow vj isfobsfjb io jio ofsjb
Answer:
Explanation:
The tidal current flows to the east at 2.0 m/s and the speed of the kayaker is 3.0 m/s.
Let Vector
is the tidal current velocity as shown in the diagram.
In order to travel straight across the harbor, the vector addition of both the velocities (i.e the resultant velocity,
must be in the north direction.
Let
is the speed of the kayaker having angle \theta measured north of east as shown in the figure.
For the resultant velocity in the north direction, the tail of the vector
and head of the vector
must lie on the north-south line.
Now, for this condition, from the triangle OAB




Hence, the kayaker must paddle in the direction of
in the north of east direction.
There is not enough information given to answer with. The force of gravity at the planet's surface depends on the planet's radius as well as its mass. The planet could have exactly the same mass as Earth has. But if it's radius is only 71% of Earth's radius, then gravity on its surface will be twice as strong as gravity on Earth.
Answer: 1896.55J/kg°C
Explanation:
The quantity of Heat Energy (Q) required to heat a material depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since,
Q = 1320 joules
Mass of material = 5.61kg
C = ? (let unknown value be Z)
Φ = 0.124°C
Then, Q = MCΦ
1320J = 5.61kg x Z x 0.124°C
1320J = 0.696kg°C x Z
Z = (1320J / 0.696kg°C)
Z = 1896.55 J/kg°C
Thus, the specific heat of the material is 1896.55J/kg°C
32 kg m/s would be the kinetic energy.