An electric circuit is anything in which electric current flows. Typically it refers to things with wiring like the electronics in your phone, but it can be made of anything that conducts electricity.
Say you have a battery, it basically has a bunch of electrons under a potential (think of gas in a tank under pressure), but the only way for the electrons to move is to move through a conductor, which are molecules with loosely held electrons. If you take a copper wire and touch each end to the two terminals you’ve completed an electric circuit because the electrons can now flow. But you can also put things partway through the wire like a lightbulb, which when the electrons run through it generates light.
The potential across the capacitor at t = 1.0 seconds, 5.0 seconds, 20.0 seconds respectively is mathematically given as
- t=0.476v
- t=1.967v
- V2=4.323v
<h3>What is the potential across the capacitor?</h3>
Question Parameters:
A 1. 0 μf capacitor is being charged by a 9. 0 v battery through a 10 mω resistor.
at
- t = 1.0 seconds
- 5.0 seconds
- 20.0 seconds.
Generally, the equation for the Voltage is mathematically given as
v(t)=Vmax=(i-e^{-t/t})
Therefore
For t=1
V=5(i-e^{-1/10})
t=0.476v
For t=5s
V2=5(i-e^{-5/10})
t=1.967
For t=20s
V2=5(i-e^{-20/10})
V2=4.323v
Therefore, the values of voltages at the various times are
- t=0.476v
- t=1.967v
- V2=4.323v
Read more about Voltage
brainly.com/question/14883923
Complete Question
A 1.0 μF capacitor is being charged by a 5.0 V battery through a 10 MΩ resistor.
Determine the potential across the capacitor when t = 1.0 seconds, 5.0 seconds, 20.0 seconds.
The modern name, Mount St. Helen's, was given to the volcanic peak in 1792 by seafarer and explorer Captain George Vancouver of the British Royal Navy. He named it in honor of fellow countryman Alleyne Fitzherbert, who held the title 'Baron St. Helen's.
Answer:
look at my Explanation
Explanation:
If the Maggie's mass is 100.0 kg and the truck is 1810 kg, calculate the magnitude of the net (unbalanced) force that can cause the acceleration.