Answer:
At <em>p</em>₀ = 0.982 the manufacturer's claim would not be rejected.
Step-by-step explanation:
The manufacturer wishes to make a claim about the percentage of non-defective CD players and is prepared to exaggerate.
Let the claim made by him be denoted as, <em>p₀</em>.
The hypothesis to test this claim is defined as:
<em>H₀</em>: The proportion of defective is <em>p₀</em>, i.e. <em>p</em> = <em>p₀</em>.
<em>Hₐ</em>: The proportion of defective is less than <em>p₀</em>, i.e. <em>p</em> < <em>p₀</em>.
The significance level of the test is, <em>α</em> = 0.05.
The information provided is:
<em>n</em> = 100
= 0.96
The test statistic is:
![Z=\frac{\hat p-p_{0}}{\sqrt{\frac{p_{0}(1-p_{0})}{n}}}=\frac{0.96-p_{0}}{\sqrt{\frac{p_{0}(1-p_{0})}{100}}}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Chat%20p-p_%7B0%7D%7D%7B%5Csqrt%7B%5Cfrac%7Bp_%7B0%7D%281-p_%7B0%7D%29%7D%7Bn%7D%7D%7D%3D%5Cfrac%7B0.96-p_%7B0%7D%7D%7B%5Csqrt%7B%5Cfrac%7Bp_%7B0%7D%281-p_%7B0%7D%29%7D%7B100%7D%7D%7D)
Decision rule:
If the test statistic value is less than the critical value of <em>z</em>, i.e. <em>Z</em>₀.₀₅ = -1.645 (because of the left tail), then the null hypothesis will be rejected. and vice versa.
So, to reject <em>H</em>₀<em> Z </em>≤ <em>Z</em>₀.₀₅.
Use hit and trial method.
At <em>p</em>₀ = 0.97 the value of <em>Z</em> is:
![Z=\frac{\hat p-p_{0}}{\sqrt{\frac{p_{0}(1-p_{0})}{n}}}=\frac{0.96-0.97}{\sqrt{\frac{0.97(1-p\0.97)}{100}}}=-0.5862](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Chat%20p-p_%7B0%7D%7D%7B%5Csqrt%7B%5Cfrac%7Bp_%7B0%7D%281-p_%7B0%7D%29%7D%7Bn%7D%7D%7D%3D%5Cfrac%7B0.96-0.97%7D%7B%5Csqrt%7B%5Cfrac%7B0.97%281-p%5C0.97%29%7D%7B100%7D%7D%7D%3D-0.5862)
At <em>p</em>₀ = 0.98 the value of <em>Z</em> is:
![Z=\frac{\hat p-p_{0}}{\sqrt{\frac{p_{0}(1-p_{0})}{n}}}=\frac{0.96-0.98}{\sqrt{\frac{0.98(1-0.98)}{100}}}=-1.4286](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Chat%20p-p_%7B0%7D%7D%7B%5Csqrt%7B%5Cfrac%7Bp_%7B0%7D%281-p_%7B0%7D%29%7D%7Bn%7D%7D%7D%3D%5Cfrac%7B0.96-0.98%7D%7B%5Csqrt%7B%5Cfrac%7B0.98%281-0.98%29%7D%7B100%7D%7D%7D%3D-1.4286)
At <em>p</em>₀ = 0.981 the value of <em>Z</em> is:
![Z=\frac{\hat p-p_{0}}{\sqrt{\frac{p_{0}(1-p_{0})}{n}}}=\frac{0.96-0.981}{\sqrt{\frac{0.981(1-0.981)}{100}}}=-1.5382](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Chat%20p-p_%7B0%7D%7D%7B%5Csqrt%7B%5Cfrac%7Bp_%7B0%7D%281-p_%7B0%7D%29%7D%7Bn%7D%7D%7D%3D%5Cfrac%7B0.96-0.981%7D%7B%5Csqrt%7B%5Cfrac%7B0.981%281-0.981%29%7D%7B100%7D%7D%7D%3D-1.5382)
At <em>p</em>₀ = 0.982 the value of <em>Z</em> is:
![Z=\frac{\hat p-p_{0}}{\sqrt{\frac{p_{0}(1-p_{0})}{n}}}=\frac{0.96-0.982}{\sqrt{\frac{0.982(1-0.982)}{100}}}=-1.65474](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Chat%20p-p_%7B0%7D%7D%7B%5Csqrt%7B%5Cfrac%7Bp_%7B0%7D%281-p_%7B0%7D%29%7D%7Bn%7D%7D%7D%3D%5Cfrac%7B0.96-0.982%7D%7B%5Csqrt%7B%5Cfrac%7B0.982%281-0.982%29%7D%7B100%7D%7D%7D%3D-1.65474)
At <em>p</em>₀ = 0.982 the value of <em>Z</em> is -1.65474.
<em>Z</em> = -1.65474 > <em>Z</em>₀.₀₅ = -1.645
Thus, at <em>p</em>₀ = 0.982 the manufacturer's claim would not be rejected.