1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jlenok [28]
3 years ago
12

Glucose is a simple sugar made up of carbon, hydrogen, and oxygen. What kind of molecule is

Chemistry
2 answers:
Flauer [41]3 years ago
4 0
The answer is <span>C. Glucose is an organic molecule.

Glucose is carbohydrate so it cannot be a protein or a nucleic acid. It is an organic molecule. The organic molecule is compound consisting of carbon to which are attached hydrogen, oxygen, and nitrogen. Since, g</span><span>lucose is a simple sugar made up of carbon, hydrogen, and oxygen, it, as well as any other carbohydrate, is the organic molecule.</span>
charle [14.2K]3 years ago
3 0

Answer:

C

Explanation:

Edg

You might be interested in
For the following reactions, predict the products and write the balanced formula equation, complete ionic equation, and net ioni
stealth61 [152]

Answer:

.

Explanation:

To predict the products of these reactions we need to know the kind of reactions. All these reactions are double replacement reaction. In these kinds of reactions, the products will be the result of exchanging ions in the reactants. So, the first step is to identify the ions.  

For the reaction, we have Hg2(NO3)2 and CuSO4.  We have the ions Hg+1,  NO3-1,   Cu+2 and SO4-2  

The way to make this exchange is putting together positive in one species with the negative of the other species. Following that rule we have

Hg^{+1}  - - -  (SO_{4})^{-2}[/text]&#10;the oxidation number will tell you the subscript for each species in the compound. In this case, is Hg2(SO4)  [tex]Cu^{+2} - - -  (NO_{3})^{-1}  - - ->  Cu(NO_{3})_{2} [/text]  &#10;So, the products for this reaction will be&#10;  [tex]Hg_{2} (NO_{3})_{2}(aq) + CuSO_{4}(aq)  -->  Hg_{2}SO_{4} + Cu(NO_{3})_{2}[/text]&#10;&#10;After this, we proceed to balance the equation. For this, we check that we have the same number of each element on both sides of the equation. In this case, we can see that we have the same number, so the equation is balanced.  Finally, we check the rules of solubility to see if the species are soluble in water or not. In this case sulfates area always soluble except for mercury so Hg2(SO4) precipitates in the solution (pre). Nitrates are always soluble so Cu(NO3)2 is soluble (aq)  &#10;[tex] Hg_{2}(NO_{3})_{2}(aq) + CuSO_{4}(aq)  - -> Hg_{2}SO_{4} (pre) + Cu(NO_{3})_{2}(aq)

The complete ionic equation allows to show which of the reactants or products exist primarily as ions.  For this reaction this will be:

2Hg^{+1}(aq)  + 2(NO_{3})^{-1}(aq) + (SO_{4})^{-2}(aq)  + Cu^{+2}(aq)    -->  Hg_{2}SO_{4} (pre)+ Cu^{+2}(aq)    + (NO_{3})^{-1}(aq) [/text]&#10;&#10;To get net ionic equation we take away the ions that did not participate in the reactions. In other words the ones that are the same on both sides in the equation. In this case we see that [tex] Cu^{+2}(aq)   and  (NO_{3})^{-1}(aq) [/text] are the same on both sides so those ions are not include in the net ionic equation.  This is:&#10;[tex] 2Hg^{+1}(aq)  + (SO_{4})^{-2}(aq)  -->  Hg_{2}SO_{4} (pre) [/text]&#10;&#10;B [tex] Ni(NO_{3})_{2}(aq) + CaCl_{2}(aq)

ions (1) Ni^{+2}  and (NO_{3})^{-1}

ions (2) Ca^{+2} and Cl^{-1}

Exchanging  

Ni^{+2}  ---- Cl^{-1}  -->  NiCl_{2}  

Ca^{+2} ---  (NO_{3})^{-1}  -->  Ca(NO_{3})_{2}  

Products  

Ni(NO_{3})_{2}(aq) + CaCl_{2}(aq) -->  NiCl_{2}  + Ca(NO_{3})_{2}  

The equation is already balanced

Chlorides are always soluble except Ag+, TI+, Pb+2 and Hg2+2. NiCl2 is soluble (aq)

Nitrates are always soluble. Ca(NO3)2 is soluble (aq)  

Since both compounds are soluble, we can say that there is not reaction.

Complete ionic equation  

Ni^{+2}(aq) + 2(NO_{3})^{-1}  (aq) + Ca^{+2}(aq) + 2Cl^{-1}(aq) - - > Ni^{+2}(aq) + 2(NO_{3})^{-1}  (aq) + Ca^{+2}(aq) + 2Cl^{-1}(aq)

Net ionic equation:

The ions in both sides of the equation are the same so all of them are cancelled and we cannot get a net ionic equation this explains why there is no reaction in this case.  

C K_{2}CO_{3}(aq) + MgI_{2}(aq)

Ions(1) K^{+1}  and (CO_{3})^{-2}

Ions(2) Mg^{+2}  and l^{-1}

Exchanging  

K^{+1}  ---  l^{-1}  - - >  KI

Mg^{+2}  ---  (CO_{3})^{-2}  - - >  Ca(CO_{3})

Products  

K_{2}CO_{3}(aq) + MgI_{2}(aq) - ->   Kl + MgCO_{3}  

The equation is not balanced

Balance equation is  

K_{2}CO_{3}(aq) + MgI_{2}(aq) - ->  2Kl (aq) + MgCO_{3} (pre)  

iodides are always soluble except Ag+, TI+, Pb+2 and Hg2+2. KI is soluble (aq)

carbonates are always insoluble except group 1 cations. MgCO3 is insoluble (pre)

complete ionic equation  

2K^{+1}(aq)  + (CO_{3})^{-2}(aq)  + Mg^{+2}(aq)   + 2l^{-1}(aq)  - - > MgCO_{3} (pre) + 2K^{+1}(aq)  + 2l^{-1}(aq)  

Net ionic equation

(CO_{3})^{-2}(aq)  + Mg^{+2}(aq)  - - > MgCO_{3} (pre)  

D Na_{2}CrO_{4}(aq) + AlBr_{3}(aq)  

Ions(1) Na^{+1}  and (CrO_{4})^{-2}

Ions(2) Al^{+3} and Br^{-1}

Exchanging  

Na^{+1}  ---- Br^{-1} - ->  NaBr  

Al^{+3} ---  (CrO_{4})^{-2} - ->  Al_{2}(CrO_{4})_{3}

Products  

Na_{2}CrO_{4}(aq) + AlBr_{3}(aq) - ->  NaBr  + Al_{2}(CrO_{4})_{3}

The equation is not balanced

Balance equation is  

3Na_{2}CrO_{4}(aq) + 2AlBr_{3}(aq) - -> 6NaBr  + Al_{2}(CrO_{4})_{3}

bromides are always soluble except Ag+, TI+, Pb+2 and Hg2+2. NaBr is soluble (aq)

chromates are always insoluble except group 1 cations. Al2(CrO4)3 is insoluble  (pre)

3Na_{2}CrO_{4}(aq) + 2AlBr_{3}(aq) - ->  6NaBr(aq) + Al_{2}(CrO_{4})_{3}(pre)

Complete ionic equation

6Na^{+1}(aq)  + 3(CrO_{4})^{-2}(aq) + 2Al^{+3}(aq) + 6Br^{-1}(aq) - -> Al_{2}(CrO_{4})_{3}(pre) +6Br^{-1}(aq) +  6Na^{+1}(aq)  

Net ionic equation

3(CrO_{4})^{-2}(aq) + 2Al^{+3}(aq) - -> Al_{2}(CrO_{4})_{3}(pre)  

6 0
3 years ago
Say something hot ;)
Fed [463]

sometimes I think of plss, and it reminds me of you *bites lip*

5 0
3 years ago
Read 2 more answers
Why is only one diastereomer formed in this reaction? Relate your answer to the mechanism you drew. b) If you used cis-stilbene
crimeas [40]

Answer:

1. Diastereomers have different physical properties (unlike most aspects of enantiomers) and often different chemical reactivity. ... Many conformational isomers are diastereomers as well. Diastereoselectivity is the preference for the formation of one or more than one diastereomer over the other in an organic reaction.

2. The result is a trans dibromide, as shown in the equation below

Explanation:

Diastereomers (sometimes called diastereoisomers) are a type of a stereoisomer.[1] Diasteoreomers are defined as non-mirror image non-identical stereoisomers. Hence, they occur when two or more stereoisomers of a compound have different configurations at one or more (but not all) of the equivalent (related) stereocenters and are not mirror images of each other.[2] When two diastereoisomers differ from each other at only one stereocenter they are epimers. Each stereocenter gives rise to two different configurations and thus typically increases the number of stereoisomers by a factor of two.

2. the addition of bromine to the trans and

cis isomers of 1,2-diphenylethene, more commonly known as trans- and cis-stilbene.

H

H

H H

trans-stilbene cis-stilbene

m.p. 122-124°C b.p. 82-84°C

density 0.970 g/mL density 1.011 g/mL

M.W. 180.25 g/mol M.W. 180.25 g/mol

In both cases, the nucleophilic double bond undergoes an electrophilic addition reaction

by the bromine reagent which proceeds via a cyclic bromonium ion. The addition of

bromine begins at one side of the double bond (either side is equally likely, but only one

option is drawn) and is followed by attack of bromide ion on the bromonium ion (again,

attack could occur at either carbon since the ion is symmetric, but only one option is

drawn). The result is a trans dibromide, as shown in the equation below:

Since the cis and trans isomers of stilbene have different geometries, it follows

that upon reaction with bromine they give rise to stereoisomeric bromonium ions and,

eventually, products that differ only by their stereochemistry.

4 0
3 years ago
Bats and marine mammals are able to locate prey and to communicate by sending and receiving sound waves that echo off surface. E
Nesterboy [21]
I’m pretty sure it’s S
8 0
3 years ago
Read 2 more answers
What element does gold identity as
ICE Princess25 [194]
Gold is a chemical element with symbol Au (from Latin: aurum) and atomic number 79, making it one of the higher atomic number elements that occur naturally. In its purest form, it is a bright, slightly reddish yellow, dense, soft, malleable, and ductile metal.
8 0
3 years ago
Other questions:
  • I need help please i need to pass
    9·2 answers
  • A 0.08541 g sample of gas occupies 10.0-ml at 288.5 k and 1.10 atm. upon further analysis, the compound is found to be 13.068% c
    9·2 answers
  • The law of reflection states that the angle of incidence equals the angle of reflection. Define the angle of incidence in terms
    13·1 answer
  • Engineers increase output in crop production by combining the strengths of
    6·1 answer
  • Predict the major and minor products of the following reaction. Name the products using systematic names.CH3CH2CH = CH2+H2O H+--
    14·1 answer
  • Which are properties of an electromagnetic wave
    14·1 answer
  • Which element is most reactive and why?<br>Fe<br>Mg<br>Pb<br>Zn​
    11·1 answer
  • Which of the following pathogens is one of the exceptions to the rule of typical cell structure?
    14·1 answer
  • If heat is released when water vapor what phase change Occurs
    11·2 answers
  • Compared to water, metals heat up faster because they have
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!