Could you please provide the options? :)
Answer:
The minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Explanation:
We know by equation of motion that,
Where, v= final velocity m/sec
u=initial velocity m/sec
a=Acceleration m/
s= Distance traveled before stop m
Case 1
u= 13 m/sec, v=0, s= 57.46 m, a=?
a = -1.47 m/ (a is negative since final velocity is less then initial velocity)
Case 2
u=29 m/sec, v=0, s= ?, a=-1.47 m/ (since same friction force is applied)
s = 285.94 m
Hence the minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Answer:
612000 C
Explanation:
Current, I, is given as the rate of flow of charge, that is:
I = Δq / Δt
where q = electric charge
t = time taken
This implies that:
Δq = I * Δt
The battery rating is 170 Ampere-hours, therefore:
Δq = 170 * 1 hour
But 1 hour = 3600 seconds;
=> Δq = 170 * 3600 = 612000 C
The total charge that the battery can provide is 612000 C.
Answer:
Derivation of Conservation of Momentum
Applying Newton's third law, these two impulsive forces are equal and opposite i.e. is equal to the change in momentum of the first object. is equal to the change in momentum of the second object. This relation suggests that momentum is conserved during the collision.
Explanation:
Hope it helps!!!