Answer:


Explanation:
Recall the formula for linear momentum (p):
which in our case equals 26.4 kg m/s
and notice that the kinetic energy can be written in terms of the linear momentum (p) as shown below:

Then, we can solve for the mass (m) given the information we have on the kinetic energy and momentum of the particle:

Now by knowing the particle's mass, we use the momentum formula to find its speed:

The appropriate response is hydrogen ions. It entirely, the core of a hydrogen particle isolated from its going with an electron. The hydrogen core is comprised of a molecule conveying a unit positive electric charge, called a proton.
I hope the answer will help you.
When its tangential speed is constant
<span>Although the speed of an object that has a uniform circular motion is constant, its velocity is </span>not constant<span>. Not only that, but it is actually changing constantly.</span><span>
</span>
Answer:
Decreases by
times
Explanation:
The intensity of a sound is defined as the energy of the sound that is flowing in an unit time through the unit area which is in the direction that is perpendicular to the direction of the sound waves movement.
The intensity of energy is described by the inverse square law. It states that the intensity varies inversely with the distance square of the distance.
In other words, the sound intensity decreases as inversely proportional to the squared of the distance. i.e. 
In the context when the distance was 3 m, the intensity of the sound was = 
But when the distance became 6 cm or 0.06 m, the sound intensity decreases by = 
=
times
Answer:
In the case of an electric bulb, the electrical energy is converted to light and heat. The amount of electrical energy put into a bulb = the amount of light energy (desirable form) plus the heat energy that comes out of the bulb (undesirable form).
Explanation:
sana nakatulong)):