<span>The visible light has wavelength in the range 400 - 700 nano-meters. The wavelengths longer than visible light are: 1-Infrared waves (used in ringtone/mobile waves)2-microwaves - used to heat and cook food. 3- Radio waves - used in communication purposes.</span>
Answer: 4.98 m/s
Explanation:
You solve these kinetic energy, potential energy problems by using the fact P.E.+ K.E. = a constant as long as friction is ignored.
PEi = 0 in this case
KEi = ½mVi² = PEf+KEf = mghf + ½mVf²
½1210*8.31² = 1210*9.8*2.26 + ½1210*Vf²
½1210*Vf² = ½1210*8.31² - 1210*9.8*2.26
Vf² = 8.31² - 2*9.8*2.26 = 4.98² so Vf = 4.98m/s
Let car A's starting position be the origin, so that its position at time <em>t</em> is
A: <em>x</em> = (40 m/s) <em>t</em>
and car B has position at time <em>t</em> of
B: <em>x</em> = 100 m - (60 m/s) <em>t</em>
<em />
They meet when their positions are equal:
(40 m/s) <em>t</em> = 100 m - (60 m/s) <em>t</em>
(100 m/s) <em>t</em> = 100 m
<em>t</em> = (100 m) / (100 m/s) = 1 s
so the cars meet 1 second after they start moving.
They are 100 m apart when the difference in their positions is equal to 100 m:
(40 m/s) <em>t</em> - (100 m - (60 m/s) <em>t</em>) = 100 m
(subtract car B's position from car A's position because we take car A's direction to be positive)
(100 m/s) <em>t</em> = 200 m
<em>t</em> = (200 m) / (100 m/s) = 2 s
so the cars are 100 m apart after 2 seconds.
Answer: Transverse
Explanation: Transverse waves possess a vertical wave motion and a horizontal particle motion.
)
5
-5
1 2 3
4
5
Other than at t = 0, when is the velocity of
the object equal to zero?
1. 5.0 s
2. 4.0 s
3. 3.5 s
4. At no other time on this graph. correct
5. During the interval from 1.0 s to 3.0 s.
Explanation:
Since vt =
Z t
0
a dt, vt
is the area between
the acceleration curve and the t axis during
the time period from 0 to t. If the area is above
the horizontal axis, it is positive; otherwise, it
is negative. In order for the velocity to be zero
at any given time t, there would have to be
equal amounts of positive and negative area
between 0 and t. According to the graph, this
condition is never satisfied.
005 (part 1 of 1) 0 points
Identify all of those graphs that represent motion
at constant speed (note the axes carefully).
a) t
x
b) t
v
c) t
a
d) t
v
e) t
a