Answer:
![v=21.36\,\,\frac{m}{s}\\](https://tex.z-dn.net/?f=v%3D21.36%5C%2C%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%5C%5C)
![m=1.2357\,\,kg](https://tex.z-dn.net/?f=m%3D1.2357%5C%2C%5C%2Ckg)
Explanation:
Recall the formula for linear momentum (p):
which in our case equals 26.4 kg m/s
and notice that the kinetic energy can be written in terms of the linear momentum (p) as shown below:
![K=\frac{1}{2} m\,v^2=\frac{1}{2} \frac{m^2\,v^2}{m} =\frac{1}{2}\frac{(m\,v)^2}{m} =\frac{p^2}{2\,m}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B1%7D%7B2%7D%20m%5C%2Cv%5E2%3D%5Cfrac%7B1%7D%7B2%7D%20%5Cfrac%7Bm%5E2%5C%2Cv%5E2%7D%7Bm%7D%20%3D%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B%28m%5C%2Cv%29%5E2%7D%7Bm%7D%20%3D%5Cfrac%7Bp%5E2%7D%7B2%5C%2Cm%7D)
Then, we can solve for the mass (m) given the information we have on the kinetic energy and momentum of the particle:
![K=\frac{p^2}{2\,m}\\282=\frac{26.4^2}{2\,m}\\m=\frac{26.4^2}{2\,(282)}\,kg\\m=1.2357\,\,kg](https://tex.z-dn.net/?f=K%3D%5Cfrac%7Bp%5E2%7D%7B2%5C%2Cm%7D%5C%5C282%3D%5Cfrac%7B26.4%5E2%7D%7B2%5C%2Cm%7D%5C%5Cm%3D%5Cfrac%7B26.4%5E2%7D%7B2%5C%2C%28282%29%7D%5C%2Ckg%5C%5Cm%3D1.2357%5C%2C%5C%2Ckg)
Now by knowing the particle's mass, we use the momentum formula to find its speed:
![p=m\,v\\26.4=1.2357\,v\\v=\frac{26.4}{1.2357} \,\frac{m}{s} \\v=21.36\,\,\frac{m}{s}](https://tex.z-dn.net/?f=p%3Dm%5C%2Cv%5C%5C26.4%3D1.2357%5C%2Cv%5C%5Cv%3D%5Cfrac%7B26.4%7D%7B1.2357%7D%20%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5C%5Cv%3D21.36%5C%2C%5C%2C%5Cfrac%7Bm%7D%7Bs%7D)