I think it is because the electrons repel each other
Answer:
Magnitude of Vector = 79.3
Explanation:
When a vector is resolved into its rectangular components, it forms two vector components. These components are named as x-component and y-component, they are calculated by the following formulae:
x-component of vector = (Magnitude of Vector)(Cos θ)
y-component of vector = (Magnitude of Vector)(Sin θ)
where,
θ = angle of the vector with x-axis = 27°
Therefore, using the values in the equation of y-component, we get:
36 = (Magnitude of Vector)(Sin 27°)
Magnitude of Vector = 36/Sin 27°
<u>Magnitude of Vector = 79.3</u>
The answer for the following answer is answered below.
- <u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
- <u><em>Therefore the option for the answer is "B".</em></u>
Explanation:
Frequency (f):
The number of waves that pass a fixed place in a given amount of time.
The SI unit of frequency is Hertz (Hz)
Time period (T):
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds (s)
Given:
frequency (f) = 100 Hz
wavelength (λ) = 2.0 m
To calculate:
Time period (T)
We know;
According to the formula;
<u>f =</u>
<u></u>
Where,
f represents the frequency
T represents the time period
from the formula;
T = 
T = 
T = 0.01 seconds
<u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
Answer:
d A ball is rolling down an inclined plane.
Explanation:
When path length is equal to the displacement
then we can say that the motion of the object must be in straight line so that the distance and displacement must be same
SO here we can say
a A ball on the end of a string is moving in a vertical circle.
In circular path distance and displacement is not same
b A toy train is traveling around a circular track.
In circular path distance and displacement is not same
c A train travels 5 miles east before it stops. It then travels 2 miles west.
Net displacement is 3 miles East while distance is 7 miles
d A ball is rolling down an inclined plane.
Here its motion is in straight line so we can say that path length and displacement will be same
e A ball rises and falls after being thrown straight up from the earth's surface.
In this type of to and fro motion path length is not same as displacement