Answer:
y²=4√2.x
Step-by-step explanation:
The focus is at (0,4) and directrix is y=x or x-y =0, for a parabola P.
The distance between the focus and the directrix of the parabola P is
=
{Since the perpendicular distance of a point (x1, y1) from the straight line ax+by+c =0 is given by
}
Let us assume that the equation of the parabola which is congruent with parabola P is y²=4ax
{Since the parabola has vertical directrix}
Hence, the distance between focus and the directrix is 2a =
, {Two parabolas are congruent when the distances between their focus and the directrix are same}
⇒ a=√2
Therefore, the equation of the parabola is y²=4√2.x (Answer)
Let's say this number is a:
a*(a-9) = 90
a^2-9a-90 = 0
(a-15)(a+6) = 0
a = 15 or a = -6
Therefor a. would be the correct answer :)
Answer:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]: 
L'Hopital's Rule
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
We are given the limit:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D)
When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B0%7D%7B0%7D)
This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D)
Plugging in <em>x</em> = 0 again, we would get:
![\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D%20%3D%20%5Cfrac%7B0%7D%7B0%7D)
Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:
![\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D%20%3D%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-%5Bcos%5E2%282x%29%20%2B%201%5D%7D%7B%5Bcos%282x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%20%2B%20%5Cfrac%7Bcos%5E2%283x%29%20%2B%202%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D%7D%7B2cos%28x%5E2%29%20-%204x%5E2sin%28x%5E2%29%7D)
Substitute in <em>x</em> = 0 once more:
![\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-%5Bcos%5E2%282x%29%20%2B%201%5D%7D%7B%5Bcos%282x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%20%2B%20%5Cfrac%7Bcos%5E2%283x%29%20%2B%202%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D%7D%7B2cos%28x%5E2%29%20-%204x%5E2sin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
And we have our final answer.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
The equation of a circle:

(h,k) - the coordinates of the center
r - the radius
The center is (4,0), the length of the radius is 2√3.
8/11 is the answer
I use this trick: When tryig to find repeating numbers divide by 11 or 9
When dividing by 9 the numerator will be the first number in the decimal
When dividing by 11 the numerator will be one more than the first number in the decimal