<u>Given:</u>
Mass of solvent water = 4.50 kg
Freezing point of the solution = -11 C
Freezing point depression constant = 1.86 C/m
<u>To determine:</u>
Moles of methanol to be added
<u>Explanation:</u>
The freezing point depression ΔTf is related to the molality m through the constant kf, as follows:
ΔTf = kf*m
where ΔTf = Freezing point of pure solvent (water) - Freezing pt of solution
ΔTf = 0 C - (-11.0 C) = 11.0 C
m = molality = moles of methanol/kg of water = moles of methanol/4.50 kg
11.0 = 1.86 * moles of methanol/4.50
moles of methanol = 26.613 moles
Ans: Thus around 26.6 moles of methanol should be added to 4.50 kg of water.
A. The hotter things get the more energy the particles have.
Answer:
The correct answer is option A.
Explanation:
Volumetric flask : A glass ware with round lower body with flat bottom and with thin cylindrical neck along with mark which indicates the specific volume filled to that mark.It is used in preparation of standard solution of compound with desired concentration with fixed volume.
Erlenmeyer flask
: is a flask with conical shape with flat bottom used in titration experiments to carry out reaction with fixed volume of solution.
Test tube
: Small cylindrical tube with rounded bottom used to observe reaction in between reactant taken in small amount.
Graduated beaker
: Laboratory glassware used measure larger volumes of solution or to mix or stir solutions and liquids.
Graduated cylinder : Laboratory thin cylindrical glassware with accurate marking of volume used to measure an accurate volume of solutions or liquids required in an experiment.
<em><u>Volumetric flask</u></em> is the best piece of laboratory glassware for preparing 500.0 mL of an aqueous solution of a solid
Answer:
The answer is below
Explanation:
The separation technique is used for separating immiscible liquids.
When separating, the stopper has to be removed when draining the lower layer so as to prevent a vacuum. If vacuum is allowed, the draining rate will reduce and stop.
The liquid should be mixed by shaking the funnel and then opening the stopcock so as the vent out gases.
When near interface between the layers, you should set your eye level so that you do not drain up to the second layer.
After completely draining the first layer, the second layer should be collected in a new flask.
After mixing the solutions in a separatory funnel, the stopper should be removed and the liquid should be mixed thoroughly and the layers allowed to separate. When you get close to the interface between the layers, get eye level with the funnel and slow the draining until the first layer is collected. Switch to a new flask to collect the second layer.