In order for carbon to be stable and have 8 electrons, it must make 4 total covalent bonds.
In prefer for oxygen to be stable and have 8 electrons, it must make 2 covalent bonds.
So, we can deduce that CO2 looks like this:
O=C=O
This molecule has two double bonds.
Pssst...Can I get a brainliest?
The dichloromethane (DCM) has less density than water and also the polarity of water is much more than DCM. So the mixture of water and dichloromethane will always be a heterogeneous mixture. In the mixture dichloromethane will be always up of the water layer. The volume of the separatory funnel which contains the mixture of DCM and water must have to be more than the total volume of the liquids thus the volume of the funnel will be more than (50+50) = 100mL.
The caution have to consider during the separation are-
1. The separatory funnel have to shake well with lid and have to settle down for some times until the two liquid separated.
2. The lid should be open very slowly as the vapor pressure of DCM is more and it will float on the water.
3. After this the stopcock should be opened and slowly the water will come out first followed by DCM.
Answer:

Explanation:
Hello,
In this case, since the chemical reaction is:

We can see that hydrochloric acid and magnesium hydroxide are in a 2:1 mole ratio, which means that the neutralization point, we can write:

In such a way, the moles of magnesium hydroxide (molar mass 58.3 g/mol) in 500 mg are:

Next, since the pH of hydrochloric acid is 1.25, the concentration of H⁺ as well as the acid (strong acid) is:
![[H^+]=[HCl]=10^{-pH}=10^{-1.25}=0.0562M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BHCl%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-1.25%7D%3D0.0562M)
Then, since the concentration and the volume define the moles, we can write:
![[HCl]*V_{HCl}=2*n_{Mg(OH)_2}](https://tex.z-dn.net/?f=%5BHCl%5D%2AV_%7BHCl%7D%3D2%2An_%7BMg%28OH%29_2%7D)
Therefore, the neutralized volume turns out:

Best regards.
Try to untie the knot from the balloon let some air out and tie if back....