Answer: When a combination reaction occurs between a metal and a non-metal the product is an ionic solid.
Explanation: Another hint(s): When magnesium burns in air, the atoms of the metal combine with the gas oxygen to produce magnesium oxide. This specific combination reaction produces the bright flame generated by flares.
Hello!
To solve this problem we'll use the
Henderson-Hasselbach equation, but first we need the vale for the pKa of Benzoic acid, which is pKa= -log(Ka)=
4,19Now, we apply the equation as follows:
![pH=pKa + log ( \frac{[C_6H_5COONa]}{[C_6H_5COOH]} )=4,19+log( \frac{0,15M}{0,25M} )=3,97](https://tex.z-dn.net/?f=pH%3DpKa%20%2B%20log%20%28%20%5Cfrac%7B%5BC_6H_5COONa%5D%7D%7B%5BC_6H_5COOH%5D%7D%20%29%3D4%2C19%2Blog%28%20%5Cfrac%7B0%2C15M%7D%7B0%2C25M%7D%20%29%3D3%2C97%20)
So, the pH of this solution of Sodium Benzoate and Benzoic Acid is
3,97Have a nice day!
<span>Most items of evidence will be collected in paper containers such as packets, envelopes, and bags. Liquid items can be transported in non-breakable, leakproof containers. Arson evidence is usually collected in air-tight, clean metal cans. Only large quantities of dry powder should be collected and stored in plastic bags. Moist or wet evidence (blood, plants, etc.) from a crime scene can be collected in plastic containers at the scene and transported back to an evidence receiving area if the storage time in plastic is two hours or less and this is done to prevent contamination of other evidence. Once in a secure location, wet evidence, whether packaged in plastic or paper, must be removed and allowed to completely air dry. That evidence can then be repackaged in a new, dry paper container. UNDER NO CIRCUMSTANCES SHOULD EVIDENCE CONTAINING MOISTURE BE PACKAGED IN PLASTIC OR PAPER CONTAINERS FOR MORE THAN TWO HOURS. Moisture allows the growth of microorganisms which can destroy or alter evidence.
</span>
Answer:
3
Explanation:
You need to remember that to measure the number of unparied electrons in an atom you need to undestard its electron configuration, and the electron configuration of phosphorus is 1s2 2s2 2p6 3s2 3p3, just the last state "3p3" have unpaired electron, and because a p state can fits 6 electrons, and here are only 3, that means that those 3 are unpaired.
The correct answer would be option 1. The mole ratio of butane to carbon dioxide is 1:4. Looking at the balanced chemical reaction, we see that we need 2 moles of butane to produce 8 moles of carbon dioxide. So, it is 2:8. Simplifying this by dividing both to 2, we have 1:4.