1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka94
3 years ago
11

An elevator weighing 2,200 lbs is raised one story in 20 seconds. If the distance between stories is 10 feet, the power develope

d by the elevator motor is ______ ft • lb/s. The power of the motor required for the elevator is _____ H.P.
Physics
1 answer:
Harman [31]3 years ago
6 0
To calculate for the power developed in the elevator motor in ft.lb/s, we multiply the distance and the weight of the elevator and divide the product by the time.
                       Power = (10 ft)(2200 lb) / 20 s = 1100 ft.lb/s

Next, convert the calculated value to HP. 
                              1100 ft.lb/s x (1 HP/ 550 ft.lb/s) = 2 HP
You might be interested in
A particle moves in a straight line with the velocity function v ( t ) = sin ( w t ) cos 3 ( w t ) . find its position function
Sunny_sXe [5.5K]

Integrating the velocity equation, we will see that the position equation is:

$f(t)=\frac{\cos ^3(\omega t)-1}{3}

<h3>How to get the position equation of the particle?</h3>

Let the velocity of the particle is:

$v(t)=\sin (\omega t) * \cos ^2(\omega t)

To get the position equation we just need to integrate the above equation:

$f(t)=\int \sin (\omega t) * \cos ^2(\omega t) d t

$\mathrm{u}=\cos (\omega \mathrm{t})

Then:

$d u=-\sin (\omega t) d t

\Rightarrow d t=-d u / \sin (\omega t)

Replacing that in our integral we get:

$\int \sin (\omega t) * \cos ^2(\omega t) d t$

$-\int \frac{\sin (\omega t) * u^2 d u}{\sin (\omega t)}-\int u^2 d t=-\frac{u^3}{3}+c$

Where C is a constant of integration.

Now we remember that $u=\cos (\omega t)$

Then we have:

$f(t)=\frac{\cos ^3(\omega t)}{3}+C

To find the value of C, we use the fact that f(0) = 0.

$f(t)=\frac{\cos ^3(\omega * 0)}{3}+C=\frac{1}{3}+C=0

C = -1 / 3

Then the position function is:

$f(t)=\frac{\cos ^3(\omega t)-1}{3}

Integrating the velocity equation, we will see that the position equation is:

$f(t)=\frac{\cos ^3(\omega t)-1}{3}

To learn more about motion equations, refer to:

brainly.com/question/19365526

#SPJ4

4 0
1 year ago
Mechanical energy is the sum of kinetic and potential energy in an object. It is energy in an object due to its motion, position
german
Mechanical energy is made when something is moved. The energy that is moving is kinetic. And potential energy is stored energy. Mechanical energy can be used to store energy and to cause moving energy. For instance: a slingshot. Pulling back the band creates potential energy and releasing it creates kinetic energy.
6 0
3 years ago
Read 2 more answers
Assume the motions and currents mentioned are along the x axis and fields are in the y direction. (a) does an electric field exe
matrenka [14]
<span> (a) does an electric field exert a force on a stationary charged object? 
Yes. The force exerted by an electric field of intensity E on an object with charge q is
</span>F=qE
<span>As we can see, it doesn't depend on the speed of the object, so this force acts also when the object is stationary.

</span><span>(b) does a magnetic field do so?
No. In fact, the magnetic force exerted by a magnetic field of intensity B on an object with  charge q and speed v is
</span>F=qvB \sin \theta
where \theta is the angle between the direction of v and B.
As we can see, the value of the force F depends on the value of the speed v: if the object is stationary, then v=0, and so the force is zero as well.

<span>(c) does an electric field exert a force on a moving charged object? 
Yes, The intensity of the electric force is still
</span>F=qE
<span>as stated in point (a), and since it does not depend on the speed of the charge, the electric force is still present.

</span><span>(d) does a magnetic field do so?
</span>Yes. As we said in point b, the magnetic force is
F=qvB \sin \theta
And now the object is moving with a certain speed v, so the magnetic force F this time is different from zero.

<span>(e) does an electric field exert a force on a straight current-carrying wire?
Yes. A current in a wire consists of many charges traveling through the wire, and since the electric field always exerts a force on a charge, then the electric field exerts a force on the charges traveling through the wire.

</span><span>(f) does a magnetic field do so? 
Yes. The current in the wire consists of charges that are moving with a certain speed v, and we said that a magnetic field always exerts a force on a moving charge, so the magnetic field is exerting a magnetic force on the charges that are traveling through the wire.

</span><span>(g) does an electric field exert a force on a beam of moving electrons?
Yes. Electrons have an electric charge, and we said that the force exerted by an electric field is
</span>F=qE
<span>So, an electric field always exerts a force on an electric charge, therefore on an electron beam as well.

</span><span>(h) does a magnetic field do so?
Yes, because the electrons in the beam are moving with a certain speed v, so the magnetic force
</span>F=qvB \sin \theta
<span>is different from zero because v is different from zero.</span>
6 0
3 years ago
How do you think heat gets from a filament to the kernel?​
PilotLPTM [1.2K]

Answer:

Explanation:

It goes thru the fluma

8 0
2 years ago
Which gas is the most abundant of the trace gases?
jek_recluse [69]
A trace gas is a gas which makes up less than 1% by volume of the Earth's atmosphere, and it includes all gases except nitrogen (78.1%) and oxygen (20.9%). The most abundant trace gas at 0.934% is argon.
8 0
3 years ago
Read 2 more answers
Other questions:
  • A bullet of mass 12 g strikes a ballistic pendulum of mass 2.2 kg. The center of mass of the pendulum rises a vertical distance
    8·1 answer
  • (a) A small object with mass 3.75 kg moves counterclockwise with constant speed 1.55 rad/s in a circle of radius 2.55 m centered
    13·1 answer
  • A billiard ball of mass 0.28 kg hits a second, identical ball at a speed of 7.2 m/s and comes to rest as the second ball flies o
    7·1 answer
  • Summarize the steps you might use to carry out an investigation using scientific methods
    6·1 answer
  • Water is said to travel from the roots of a tree to the uppermost branches via capillary action. assuming that the smallest capi
    6·1 answer
  • A 66-kg fellow stands on a digital scale in an elevator that accelerates upwards from rest to 4.5 m/s in 2.00 s. show answer Inc
    10·1 answer
  • A car accelerates uniformly in a straight line
    10·1 answer
  • The Mars Curiosity rover was required to land on the surface of Mars with a velocity of 1 m/s. Given the mass of the landing veh
    12·1 answer
  • Question below in photos!!(there are 2 photos) Please answer! Will mark BRAINLIEST! ⬇⬇⬇⬇⬇⬇⬇
    10·1 answer
  • How are kids made? my teacher asked us this question
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!