The answer is <span>It protects the seed until it matures.
Through the process of elimination:
- </span><span>It protects the seed until it matures. YES. A female pine cone the unfertilized seeds until they become mature. Then, the cone opens and seeds fall out of the cone.
</span><span>- It makes food for the adult plant. NO. The food of plants in made of green leaves that contain chlorophyll in the process of photosynthesis.
- It allows for photosynthesis to occur. NO. The cones have nothing to do with photosynthesis but they are responsible for reproduction.
- It acts as an object to attract birds. NO. The birds look for colourful flowers while cones are woody.
- It serves as an ornamental object on the tree. NO. Every part of plants has more important function than serving as an ornamental object.</span><span>
</span>
Answer:
W=1705.2 J
Explanation:
Given that
mass ,m= 60 kg
Acceleration due to gravity ,g= 9.8 m/s²
Height ,h= 2.9 m
As we know that work done by a force given as
W = F . d
F=force
d=Displacement
W=work done by force
Now by putting the values
F= m g (Acting downward )
d= h (Upward)
W= m g h ( work done against the force)
W= 60 x 9.8 x 2.9 J
W=1705.2 J
Therefore the answer will be 1705.2 J.
A. attract each other.
The Law of Universal Gravitation discusses the phenomenon of gravity. Remember that gravity is the force that keeps us on Earth; the Earth pulls us down, and our bodies pull back. Gravity is the force of attraction, so the correct answer is a).
a) 32 kg m/s
Assuming the spring is initially at rest, the total momentum of the system before the collision is given only by the momentum of the bowling ball:

The ball bounces off at the same speed had before, but the new velocity has a negative sign (since the direction is opposite to the initial direction). So, the new momentum of the ball is:

The final momentum after the collision is the sum of the momenta of the ball and off the spring:

where
is the momentum of the spring. For the conservation of momentum,

b) -32 kg m/s
The change in momentum of bowling ball is given by the difference between its final momentum and initial momentum:

c) 64 N
The change in momentum is equal to the product between the average force and the time of the interaction:

Since we know
, we can find the magnitude of the force:

The negative sign simply means that the direction of the force is opposite to the initial direction of the ball.
d) The force calculated in the previous step (64 N) is larger than the force of 32 N.