Answer:
When the death rate is higher than the birth rate, the population decreases. It increases when the opposite happens.
Explanation:
Answer:
(1) Cl₂ is the limiting reactant.
(2) 8.18 g
Explanation:
- 2Na(s) + Cl₂(g) → 2NaCl(s)
First we <u>convert the given masses of reactants into moles</u>, using their <em>respective molar masses</em>:
- Na ⇒ 12.0 g ÷ 23 g/mol = 0.522 mol Na
- Cl₂ ⇒ 5.00 g ÷ 70.9 g/mol = 0.070 mol Cl₂
0.070 moles of Cl₂ would react completely with (2 * 0.070) 0.14 moles of Na. There are more Na moles than that, so Na is the reactant in excess while Cl₂ is the limiting reactant.
Then we <u>calculate how many moles of NaCl are formed</u>, <em>using the limiting reactant</em>:
- 0.070 mol Cl₂ *
= 0.14 mol NaCl
Finally we <u>convert NaCl moles into grams</u>:
- 0.14 mol NaCl * 58.44 g/mol = 8.18 g
Because the alkali metals are the group 1 metals, they have only 1 valence electron that they want to lose, and the halogens are the group 17 nonmetals, they want to gain 1 valence electron to become stable.
The fuel released 90 calories of heat.
Let suppose that water experiments an entirely <em>sensible</em> heating. Hence, the heat released by the fuel is equal to the heat <em>absorbed</em> by the water because of principle of energy conservation. The heat <em>released</em> by the fuel is expressed by the following formula:
(1)
Where:
- Mass of the sample, in grams.
- Specific heat of water, in calories per gram-degree Celsius.
- Temperature change, in degrees Celsius.
If we know that
,
and
, then the heat released by the fuel is:

The fuel released 90 calories of heat.
We kindly invite to check this question on sensible heat: brainly.com/question/11325154
The atomic number of an atom is determined by the number of protons it has..
It is also the whole number shown on the periodic table