Answer:
the energy of the third excited rotational state 
Explanation:
Given that :
hydrogen chloride (HCl) molecule has an intermolecular separation of 127 pm
Assume the atomic isotopes that make up the molecule are hydrogen-1 (protium) and chlorine-35.
Thus; the reduced mass μ = 
μ = 
μ = 
∵ 1 μ = 1.66 × 10⁻²⁷ kg
μ = 
μ = 1.6139 × 10⁻²⁷ kg

The rotational level Energy can be expressed by the equation:

where ;
J = 3 ( i.e third excited state) &




We know that :
1 J = 



It always shift to the direction where balance out the reaction
here
<span>It shifts in the exothermic direction.</span>
I believe the correct answer from the choices listed above is option D. Catalysts lower the activation energy of a chemical reaction. It <span>is a substance which speeds up a reaction, but is chemically unchanged at the end of the reaction. It provides another pathway for the reaction to occur.</span>
The answer should be...99.318!
Explanation:
Ions are always formed when metals and non-metals interact because metals are electropositive. They willing release electrons to non-metals that are electronegative.
This activity results in charge separation. The transfer of electrons from one specie to another is what results in an ionic bond and the precedence of charged particles.
Between non-metals, the electrons are jointly shared. Therefore, there is no charge separation.