Well the obvious you will crash literally
Answer:
The astronaut can throw the hammer in a direction away from the space station. While he is holding the hammer, the total momentum of the astronaut and hammer is 0 kg • m/s. According to the law of conservation of momentum, the total momentum after he throws the hammer must still be 0 kg • m/s. In order for momentum to be conserved, the astronaut will have to move in the opposite direction of the hammer, which will be toward the space station.
Explanation:
Assuming Adam is on earth g= 9.8 m/s and m= weight/ gravity = 667/9.8 = 68 kg
An object's gravitational potential energy is
(mass) x (gravity) x (height above ground) .
I don't see the object's speed anywhere in that formula, do you ?
An object's speed has no effect whatsoever on its potential energy ... only if it changes the object's height above ground.