in cgs system, plank's constant= h=6.626 x10⁻²⁶ erg s
Value of Plank's constant in SI system= 6.626 x10⁻³⁴ Js
now 1 Joule= 10⁷ ergs
so h= 6.626 x10⁻³⁴ Js (10⁷ ergs/1J)
h=6.626 x10⁻²⁷ erg s
If the heart is beating at 76. 0 beats per minute, the Frequency of heart's oscillations in hertz is 1.25 Hertz.
The Frequency is defined as the number of oscillations completed in 1s.
Our heart beats continuously giving rise to the frequency of the heart.
Measuring frequency would be possible if we measure the time in seconds.
75 beats per minute means that 75 beats occur in 60s.
Frequency = Number of beats / Total time taken
Frequency = 75 / 60
Frequency = 1.25 Hz
Hence, number of beats per second is 1.25 Beats.
Beats per second or Cycles per second is same as the frequency of oscillation called as Hertz (Hz)
Hence, frequency of the heart oscillation is 1.25 Hertz (Hz).
Learn more about Frequency here, brainly.com/question/14316711
#SPJ4
Answer:
A variable (often denoted by x ) whose variation does not depend on that of another.
Explanation:
Answer:
the distance from charge A to C is r₁₃= 1.216 m
Explanation:
following Coulomb's law , the force exerted by 2 point charges between themselves is:
F= k*q₁*q₂/r₁₂² , where q is charge , r is distance and 1 and 2 represents the charge A and charge B respectively , k=constant
since C ( denoted as 3) is at equilibrium
F₁₃=F₂₃
k*q₁*q₃/r₁₃²=k*q₂*q₃/r₂₃²
q₁/r₁₃²=q₂/r₂₃²
r₁₃²/q₁=r₂₃²/q₂
r₂₃=r₁₃*√(q₂/q₁)
since C is at rest and is co linear with A and B ( otherwise it would receive a net force in either vertical or horizontal direction) , we have
r₁₃+r₂₃=d=r₁₂
r₁₃+r₁₃*√(q₂/q₁)=d
r₁₃*(1+√(q₂/q₁))=d
r₁₃=d/(1+√(q₂/q₁))
replacing values
r₁₃=d/(1+√(q₂/q₁)) = 3.00 m/(1+√(3.10 C/1.44 C)) = 1.216 m
thus the distance from charge A to C is r₁₃= 1.216 m
Answer:
Here! Try this Website!: www.britannica.com › science › physical-science physical science | Definition, History, & Topics | Britannica. So you will learn a lot more about science, history, and topics about it!