Answer:

Explanation:
From the question we are told that
Distance b/w A&B 
Frequency 
Sound speed 
Generally the equation for wavelength is mathematically given as




Generally the destructive interference X is mathematically given by


Therefore the destructive interference is

Answer:
6.3 m/s
Explanation:
m = mass of the block = 1.10 kg
k = spring constant of the spring
x = stretch in the spring = 0.2 m
t = time taken by block to come to zero speed first time = 0.100 s
T = Time period of oscillation
Time period of oscillation is given as
T = 2t
T = 2 (0.1)
T = 0.2 s
Time period is also given as


k = 1084.6 N/m
v = maximum speed of the block
using conservation of energy
Maximum kinetic energy = Maximum spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(1.10) v² = (1084.6) (0.2)²
v = 6.3 m/s
a) Cumulus is 100% the correct answer
Since velocity is a speed and a direction, there are only two ways for you to accelerate: change your speed or change your direction—or change both. If you're not changing your speed and you're not changing your direction, then you simply cannot be accelerating—no matter how fast you're going.
(a) The stress in the post is 1,568,000 N/m²
(b) The strain in the post is 7.61 x 10⁻⁶
(c) The change in the post’s length when the load is applied is 1.9 x 10⁻⁵ m.
<h3>Area of the steel post</h3>
A = πd²/4
where;
d is the diameter
A = π(0.25²)/4 = 0.05 m²
<h3>Stress on the steel post</h3>
σ = F/A
σ = mg/A
where;
- m is mass supported by the steel
- g is acceleration due to gravity
- A is the area of the steel post
σ = (8000 x 9.8)/(0.05)
σ = 1,568,000 N/m²
<h3>Strain of the post</h3>
E = stress / strain
where;
- E is Young's modulus of steel = 206 Gpa
strain = stress/E
strain = (1,568,000) / (206 x 10⁹)
strain = 7.61 x 10⁻⁶
<h3>Change in length of the steel post</h3>
strain = ΔL/L
where;
- ΔL is change in length
- L is original length
ΔL = 7.61 x 10⁻⁶ x 2.5
ΔL = 1.9 x 10⁻⁵ m
Learn more about Young's modulus of steel here: brainly.com/question/14772333
#SPJ1