Answer:
im sure your already past this but it's E.
Explanation:
This is because in this case potential energy is linear to height, which means that the higher the more potential energy.
If you put a penny in each light spot the penny that the light is shining on will recive the most energy.
Answer:
122.84 J
Explanation:
Since plate is square, area, A is given by 
The distance between plates, d, is given in the question as 2mm=0.002m
Charge on plate, Q, as given in the question is 240 
Assuming mica dielectric constant, k of 7
Capacitance, C is given by
C=
Stored energy, E is given by
E=
Therefore, the stored energy is 122.84 J
Answer:
3.5 hours
Explanation:
Speed = distance/time
Let the distance that Fiora biked at 20 mi/h through be x miles and the time it took her to bike through that distance be t hours at 20 mi/h
Then, the rest of the distance that she biked at 14 mi/h is (112 - x) miles
And the time she spent biking at 14 mi/h the rest of the distance = (6.5 - t) hours
Her first biking speed = 20 mph = 20 miles/hour
Speed = distance/time
20 = x/t
x = 20 t (eqn 1)
Her second biking speed = 14 mph = 14 miles/hour
14 = (112 - x)/(6.5 - t)
112 - x = 14 (6.5 - t)
112 - x = 91 - 14t (eqn 2)
Substitute for x in (eqn 2)
112 - 20t = 91 - 14t
20t - 14t = 112 - 91
6t = 21
t = 3.5 hours
x = 20t = 20 × 3.5 = 70 miles.
(112 - x) = 112 - 70 = 42 miles
(6.5 - t) = 6.5 - 3.5 = 3 hours
Meaning that she travelled at 20 mi/h for 3.5 hours.
Answer:
(a) 10 m/s
(b) 22.4 m/s
Explanation:
(a) Draw a free body diagram of the car when it is at the top of the loop. There are two forces: weight force mg pulling down, and normal force N pushing down.
Sum of forces in the centripetal direction (towards the center):
∑F = ma
mg + N = mv²/r
At minimum speed, the normal force is 0.
mg = mv²/r
g = v²/r
v = √(gr)
v = √(10 m/s² × 10.0 m)
v = 10 m/s
(b) Energy is conserved.
Initial kinetic energy + initial potential energy = final kinetic energy
½ mv₀² + mgh = ½ mv²
v₀² + 2gh = v²
(10 m/s)² + 2 (10 m/s²) (20.0 m) = v²
v = 22.4 m/s