Answer:
1 (7/45)
Step-by-step explanation:
you'll see how many 45 can go into 52. Only 1 45 can fit into 52 with some leftover.
so to find the left over numbers you'll subtract 45 from 52= 7
so 7/45 is left over
False because it’s not correct it’s a false statement because (again)…
<em>y</em> - 1/<em>z</em> = 1 ==> <em>y</em> = 1 + 1/<em>z</em>
<em>z</em> - 1/<em>x</em> = 1 ==> <em>z</em> = 1 + 1/<em>x</em>
==> <em>y</em> = 1 + 1/(1 + 1/<em>x</em>) = 1 + <em>x</em>/(<em>x</em> + 1) = (2<em>x</em> + 1)/(<em>x</em> + 1)
<em>x</em> - 1/<em>y</em> = <em>x</em> - (<em>x</em> + 1)/(2<em>x</em> + 1) = (2<em>x</em> ² - 1)/(2<em>x</em> + 1) = 1
==> 2<em>x</em> ² - 1 = 2<em>x</em> + 1
==> 2<em>x</em> ² - 2<em>x</em> - 2 = 0
==> <em>x</em> ² - <em>x</em> - 1 = 0
==> <em>x</em> = (1 ± √5)/2
If you start solving for <em>z</em>, then for <em>x</em>, then for <em>y</em>, you would get the same equation as above (with <em>y</em> in place of <em>x</em>), and the same thing happens if you solve for <em>x</em>, then <em>y</em>, then <em>z</em>. So it turns out that <em>x</em> = <em>y</em> = <em>z</em>.
Answer:
So, the volume V is

Step-by-step explanation:
We have that:

We have the formula:

We calculate the volume V, we get
![V=2\pi\int_a^b x(g(x)-f(x))\, dx\\\\V=2\pi\int_0^1 x(7x-0)\, dx\\\\V=2\pi\int_0^1 7x^2\, dx\\\\V=2\pi\cdot 7\left[\frac{x^3}{3}\right]_0^1\\\\V=14\pi\left(\frac{1}{3}-\frac{0}{3}\right)\\\\V=\frac{14\pi}{3}](https://tex.z-dn.net/?f=V%3D2%5Cpi%5Cint_a%5Eb%20x%28g%28x%29-f%28x%29%29%5C%2C%20dx%5C%5C%5C%5CV%3D2%5Cpi%5Cint_0%5E1%20x%287x-0%29%5C%2C%20dx%5C%5C%5C%5CV%3D2%5Cpi%5Cint_0%5E1%207x%5E2%5C%2C%20dx%5C%5C%5C%5CV%3D2%5Cpi%5Ccdot%207%5Cleft%5B%5Cfrac%7Bx%5E3%7D%7B3%7D%5Cright%5D_0%5E1%5C%5C%5C%5CV%3D14%5Cpi%5Cleft%28%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B0%7D%7B3%7D%5Cright%29%5C%5C%5C%5CV%3D%5Cfrac%7B14%5Cpi%7D%7B3%7D)
So, the volume V is

We use software to draw the graph.
Answer:
Step-by-step explanation:
we can use the trigonometric function in a right triangle
cos x = adjacent side to the angle /hypothenuse
cos 36°= x/10 ; multiply both sides by 10
10 * cos 36° = x ; make sure your calculator mode is in degrees
8.1 = x