[X,Y]=40,50. 40 4$ tickets and 50 2$ tickets.
(a) 4
(b) y = sqrt(9 - (9/16)x^2)
The best guess to the formula using knowledge of the general formula for an ellipse is:
x^2/16 + y^2/9 = 1
(a). An ellipse is reflectively symmetrical across both the major and minor axis. So if you can get the area of the ellipse in a quadrant, then multiplying that area by 4 would give the total area of the ellipse. So the factor of 4 is correct.
(b). The general equation for an ellipse is not suitable for a general function since it returns 2 y values for every x value. But if we restrict ourselves to just the positive value of a square root, that problem is easy to solve. So let's do so:
x^2/16 + y^2/9 = 1
x^2/16 + y^2/9 - 1 = 0
x^2/16 - 1 = - y^2/9
-(9/16)x^2 + 9 = y^2
9 - (9/16)x^2 = y^2
sqrt(9 - (9/16)x^2) = y
y = sqrt(9 - (9/16)x^2)
Hello!
To find the area of a rectangle you do length * width
You can plug in the values you know
(x - 2) * 5 = 30
Divide both sides by 5
x - 2 = 6
Add 2 to both sides
x = 8
The answer is 8
Hope this helps!
Answer:



Step-by-step explanation:
<u>Optimizing With Derivatives
</u>
The procedure to optimize a function (find its maximum or minimum) consists in
:
- Produce a function which depends on only one variable
- Compute the first derivative and set it equal to 0
- Find the values for the variable, called critical points
- Compute the second derivative
- Evaluate the second derivative in the critical points. If it results positive, the critical point is a minimum, if it's negative, the critical point is a maximum
We know a cylinder has a volume of 4
. The volume of a cylinder is given by

Equating it to 4

Let's solve for h

A cylinder with an open-top has only one circle as the shape of the lid and has a lateral area computed as a rectangle of height h and base equal to the length of a circle. Thus, the total area of the material to make the cylinder is

Replacing the formula of h

Simplifying

We have the function of the area in terms of one variable. Now we compute the first derivative and equal it to zero

Rearranging

Solving for r

![\displaystyle r=\sqrt[3]{\frac{4}{\pi }}\approx 1.084\ feet](https://tex.z-dn.net/?f=%5Cdisplaystyle%20r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%7D%7B%5Cpi%20%7D%7D%5Capprox%201.084%5C%20feet)
Computing h

We can see the height and the radius are of the same size. We check if the critical point is a maximum or a minimum by computing the second derivative

We can see it will be always positive regardless of the value of r (assumed positive too), so the critical point is a minimum.
The minimum area is

