Answer:
The amount of energy in molecules of matter determines the state of matter.
Explanation:
The amount of energy in molecules of matter determines the state of matter. Matter can exist in one of several different states, including gas, liquid, or solid-state.
Li+ has a smaller ionic radius than K+
and smaller molecules have more collisions/interactions between each other
<h3>What is ion-solvent interaction ?</h3>
In the case of ion-solvent interactions, the state in which the interac-tions exist is an obvious one; it is the situation in which ions are inside the solvent.
- Ions are charged particles, and charges interact with other charges. So there will also be ion-ion, as well as ion-solvent, interactions in the solution.
- In the process of solvation, ions are surrounded by a concentric shell of solvent. Solvation is the process of reorganizing solvent and solute molecules into solvation complexes.
Learn more about Ion-solvent interaction here:
brainly.com/question/21307101
#SPJ4
Answer:
4) Each cytochrome has an iron‑containing heme group that accepts electrons and then donates the electrons to a more electronegative substance.
Explanation:
The cytochromes are <u>proteins that contain heme prosthetic groups</u>. Cytochromes <u>undergo oxidation and reduction through loss or gain of a single electron by the iron atom in the heme of the cytochrome</u>:

The reduced form of ubiquinone (QH₂), an extraordinarily mobile transporter, transfers electrons to cytochrome reductase, a complex that contains cytochromes <em>b</em> and <em>c₁</em>, and a Fe-S center. This second complex reduces cytochrome <em>c</em>, a water-soluble membrane peripheral protein. Cytochrome <em>c</em>, like ubiquinone (Q), is a mobile electron transporter, which is transferred to cytochrome oxidase. This third complex contains the cytochromes <em>a</em>, <em>a₃</em> and two copper ions. Heme iron and a copper ion of this oxidase transfer electrons to O₂, as the last acceptor, to form water.
Each transporter "downstream" is <u>more electronegative</u><u> than its neighbor </u>"upstream"; oxygen is located in the inferior part of the chain. Thus, the <u>electrons fall in an energetic gradient</u> in the electron chain transport to a more stable localization in the <u>electronegative oxygen atom</u>.
Answer:
The standard enthalpy of formation of NOCl(g) at 25 ºC is 105 kJ/mol
Explanation:
The ∆H (heat of reaction) of the combustion reaction is the heat that accompanies the entire reaction. For its calculation you must make the total sum of all the heats of the products and of the reagents affected by their stoichiometric coefficient (number of molecules of each compound that participates in the reaction) and finally subtract them:
Enthalpy of the reaction= ΔH = ∑Hproducts - ∑Hreactants
In this case, you have: 2 NOCl(g) → 2 NO(g) + Cl₂(g)
So, ΔH=
Knowing:
- ΔH= 75.5 kJ/mol
= 90.25 kJ/mol
= 0 (For the formation of one mole of a pure element the heat of formation is 0, in this caseyou have as a pure compound the chlorine Cl₂)
=?
Replacing:
75.5 kJ/mol=2* 90.25 kJ/mol + 0 - 
Solving
-
=75.5 kJ/mol - 2*90.25 kJ/mol
-
=-105 kJ/mol
=105 kJ/mol
<u><em>The standard enthalpy of formation of NOCl(g) at 25 ºC is 105 kJ/mol</em></u>
The question above can be solved by using this equation:
CAVA =CBVB
Where:
CA =Concentration of acid = 1.0 M
VA = Volume of acid = ?
CB = Concentration of base = 1.0 M
VB = Volume of base = 25 ml
VA = CBVB / CA
VA = [1 * 25] / 1 = 25 / 1 = 25
VA = 25 ml
Therefore, the volume of acid that is required to completely neutralize the base is 25 ml.<span />