The formula for mole fraction is:
-(1)
The solubility of oxygen gas = 1.0 mmol/L (given)
1.0 mmol/L means 1.0 mmol are present in 1 L.
Converting mmol to mol:

So, moles of oxygen = 0.001 mol
For moles of water:
1 L of water = 1000 mL of water
Since, the density of water is 1.0 g/mL.


So, the mass of water is 1000 g.
Molar mass of water = 18 g/mol.
Number of moles of water = 
Substituting the values in formula (1):


Hence, the mole fraction is
.
Answer:
You need to heat the mixture to 78.37°C
Explanation:
In distillation, you can separate 2 or more compounds based on their difference in boiling points.
In a mixture of ethanol and water, in theory, you need to heat the mixture to 78.37°C. In this temperature, the ethanol must be evaporated and then condensed in the receiving flask.
Answer:
1.429 g of N₂
Explanation:
The Haber process is a reaction that combines nitrogen with hydrogen to form ammonia according to the following balanced equation:
- N₂ ₍g₎ + 3 H₂ ₍g₎ ⇆ 2NH₃ ₍g₎
One can note that 1 mol of N₂ react with H₂ to produce 2 mol of NH₃.
We cannot compare weight of a substance (in grams) to another in chemical reactions, but we can use moles, then we have to convert the weight of NH3 to moles.
no. of moles of NH₃ = (mass / molar mass) = (1.7 g / 17 g/mol) = 0.1 mol
and the actual yield is 98% , then the theoretical number of moles that would be produced are:
- percent yield = (actual yield / theoretical yield) × 100
98 = (0.1 mol / theoretical yield) × 100
theoretical no. of moles of NH₃ = (0.1 * 100) /98 = 0.102 mol
using cross multiplication
1 mol of N₂ → 2 mol of NH₃.
?? mol of N₂ → 0.102 mol of NH₃.
no of moles of N₂ = [(1 mol * 0.102 mol) / 2 mol] = 0.051 mol
Last step is to convert the moles back to grams using:
mass = (no of moles of N₂ * molar mass of N₂)
= (0.051 mol * 28 g/mol) = 1.429 g
Answer:
B because you will feel the moons gravitational force and not earths
Hope it helps
Explanation: