The sample is all voters in the district that think he’s doing a good job
X = x
to solve, subtract both sides by x:
0 = 0
x is always equals to x so infinite solutions
Answer:
x^2+8x+<u>1</u><u>6</u><u>=</u><u>(</u><u>x-4</u><u>)</u><u>^</u><u>2</u>
<em><u>EXPLANATION</u></em><em><u>:</u></em>
<u>(</u><u>a</u><u>+</u><u>b</u><u>)</u><u>^</u><u>2</u><u>=</u><u>a2</u><u>+</u><u>2</u><u>.</u><u>a</u><u>.</u><u>b</u><u>+</u><u>b2</u>
<u>we</u><u> </u><u>have</u><u> </u><u>to</u><u> </u><u>break</u><u> </u><u>the</u><u> </u><u>middle</u><u> </u><u>term</u><u> </u><u>i</u><u>n</u><u> </u><u>2</u><u>a</u><u>b</u><u> </u><u>here</u><u> </u><u>a</u><u> </u><u>is</u><u> </u><u>x</u><u> </u><u>then</u><u> </u><u>2</u><u>x</u><u>b</u><u>=</u><u>8</u><u>x</u><u>,</u><u> </u><u>=</u><u>></u><u> </u><u>b</u><u>=</u><u>4</u><u>,</u><u> </u><u>but</u><u> </u><u>value</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>and</u><u> </u><u>b</u><u> </u><u>to</u><u> </u><u>get</u><u> </u><u>the</u><u> </u><u>req</u><u>uired</u><u> </u><u>equation</u><u>!</u>
Assuming these are 4^(1/7), 4^(7/2), 7^(1/4) and 7^(1/2), the conversion process is pretty quick. the denominator, or bottom, of your fraction exponent becomes the "index" of your radical -- in ∛, "3" is your index, just for reference. the numerator, aka the top of the fraction exponent, becomes a power inside the radical.
4^(1/7) would become ⁷√4 .... the bottom of the fraction becomes the small number included in the radical and the 4 goes beneath the radical
in cases such as this one, where 1 is on top of the fraction radical, that number does technically go with the 4 beneath the radical--however, 4¹ = 4 itself, so there is no need to write the implied exponent.
4^(7/2) would become √(4⁷) ... the 7th power goes with the number under your radical and the "2" becomes a square root
7^(1/4) would become ⁴√7 ... like the first answer, the bottom of the fraction exponent becomes the index of the radical and 7 goes beneath the radical. again, the 1 exponent goes with the 7 beneath the radical, but 7¹ = 7
7^(1/2) would become, simply, √7