Answer:
There are 12 atoms in the compound
Since
potassium and phosphate is what we are to find for and they are both found in
the potassium phosphate solution, therefore we solve for this one first on the
basis of the phosphate.
The formula
for finding the volume given the concentration and number of moles is:
Volume =
number of moles / concentration in Molarity
Volume
potassium phosphate required = 30 mmol phosphate / (3 mmol / mL)
<u>Volume
potassium phosphate required = 10 mL</u>
This would
also contain potassium in amounts of:
Amount of
potassium in potassium phosphate = 10 mL (4.4 meg / mL)
Amount of
potassium in potassium phosphate = 44 meg
Therefore
the potassium chloride required is:
Volume of
potassium chloride = (80 meg – 44 meg) / (2 meg / mL)
<span><u>Volume of
potassium chloride = 72 mL</u></span>
The observation, in this case, is quantitative.
<h3>Quantitative observation</h3>
Quantitative observations are observations that can be recorded based on quantitative data. In other words, they are observations that can be assigned numerical values.
Quantitative observations are as opposed to qualitative observations because the former cannot be assigned numerical values. They can be ranked or qualified.
In this case, Danielle and Heather could assign numbers to the length, width, and height of the tank in order to calculate its volume.
More on quantitative observations can be found here: brainly.com/question/17491501
Answer:
7.35atm
Explanation:
Data obtained from the question include:
V1 = 28L
T1 = 42°C = 42 + 273 = 315K
P1 =?
V2 = 49L
T2 = 27°C = 27 + 273 = 300K
P2 = 4atm
Using P1V1/T1 = P2V2/T2, the original pressure can be obtained as follows:
P1V1/T1 = P2V2/T2
P1 x 28/315 = 4 x 49/300
Cross multiply to express in linear form
P1 x 28 x 300 = 315 x 4 x 49
Divide both side by 28 x 300
P1 = (315 x 4 x 49) /(28 x 300)
P1 = 7.35atm
Therefore, the original pressure is 7.35atm