Ggz ryvsf by ₩÷€€%=~₩¥£¥¥¥¥
Answer:

Explanation:
Let's consider the following chemical equilibrium:
CaCO₃(s) ⇄ CaO(s) + CO₂(g)
Given the pressure equilibrium constant Kp = pCO₂
We can calculate the concentration equilibrium constant (Kc) using the following expression.

where,
R is the ideal gas constant
T is the absolute temperature
Δn(g) = moles of gaseous products - moles of gaseous reactants = 1 - 0 = 1
The expression for this reaction is:

54 would be the correct answer i beleive
Since you have not included the given reaction, I am going to explain you how to solve these kind of problems.
1) The chemical equilibrium is a
dynamic process. It means that in an equilibrim reaction there are two rectaions,
the forward reaction and the reverse reaction whose velocities are the same.
2) The general equation of a a chemical reaction in equlibrium is:
aA + bB ⇄ cC + dDWhere A and B are the reactants, C and D are the products, and a, b, c, d, are the coefficientes in the
balanced equation.3) So, the
equilibrium law is:
![Keq= \frac{C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=Keq%3D%20%5Cfrac%7BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D%20)
Where Keq is the constant of equilibrium
4) To complete the explanation, I am going to deal with an
example:
i) Consider the equlibrium reaction between hydrogen and iodine:
H₂ (g) + I₂(g) ⇄ 2HI(g)ii) The forward reaction is H₂ (g) + I₂(g) → 2HI(g)
iii) The reverse reaction is 2HI (g) → H₂ (g) + I₂(g)
iv) The
law of equilibrium is: