Fermat's little theorem states that

≡a mod p
If we divide both sides by a, then

≡1 mod p
=>

≡1 mod 17

≡1 mod 17
Rewrite

mod 17 as

mod 17
and apply Fermat's little theorem

mod 17
=>

mod 17
So we conclude that

≡1 mod 17
Find out smarty don’t cheat
Answer:
Step-by-step explanation:
f(-9+h)= (-9+h)² = h²-18h+81
f(-9+h)-f(-9)=h²-18h+81 -81 because : f(-9) = (-9)² = 81
f(-9+h)-f(-9)=h²-18h
(f(-9+h)-f(-9))/h=(h²-18h)/h = h(h-18)/h =h-18
lim (f(-9+h)-f(-9))/h = lim(h-18= - 18
h→0 h→0