The sum of the inner angles of any triangle is always 180°, i.e. you have

In the particular case of an equilater triangle, all three angles are the same, so

and the expression becomes

which implies 
So, if you rotate the triangle with respect to its center by 60 degrees, the triangle will map into itself. In particular, if you want point A to be mapped into point B, you have to perform a counter clockwise rotation of 60 degrees with respect to the center of the triangle.
Of course, this is equivalent to a clockwise rotation of 120 degrees.
Finally, both solutions admit periodicity: a rotation of 60+k360 degrees has the same effect of a rotation of 60 degrees, and the same goes for the 120 one (actually, this is obvisly true for any rotation!)
The height is always measured perpendicular to the horizontal surface on which the pyramid rests, whereas the slant height is measured perpendicular to one edge of the base to the vertex, and, as we would say, appears to be slanted.
Let X be the number of burglaries in a week. X follows Poisson distribution with mean of 1.9
We have to find the probability that in a randomly selected week the number of burglaries is at least three.
P(X ≥ 3 ) = P(X =3) + P(X=4) + P(X=5) + ........
= 1 - P(X < 3)
= 1 - [ P(X=2) + P(X=1) + P(X=0)]
The Poisson probability at X=k is given by
P(X=k) = 
Using this formula probability of X=2,1,0 with mean = 1.9 is
P(X=2) = 
P(X=2) = 
P(X=2) = 0.2698
P(X=1) = 
P(X=1) = 
P(X=1) = 0.2841
P(X=0) = 
P(X=0) = 
P(X=0) = 0.1495
The probability that at least three will become
P(X ≥ 3 ) = 1 - [ P(X=2) + P(X=1) + P(X=0)]
= 1 - [0.2698 + 0.2841 + 0.1495]
= 1 - 0.7034
P(X ≥ 3 ) = 0.2966
The probability that in a randomly selected week the number of burglaries is at least three is 0.2966
Answer:
y = 4x + 5
Step-by-step explanation:
Answer:
7 miles
Step-by-step explanation:
As, we will take unit rate as "x"
So, for one day = x distance
For 5 days = 5(x)
For 5 days she covered 35 miles
So therefore,
5(x) = 35 miles
X= 35/5
X=7 miles
For a day= 7 miles are covered